3 September 1975:

Downward Continuation of Operators

by Benjamin Friedlander

Introduction

se

There are various ways in which data can be downward continued,

depending on whether the sources are moved along or not and whether the

free surface is fixed or moved along. The first section will treat

the one-dimensional problem, assuming a layered earth and plane wave

propagation in the direction perpendicular to the layers.

section will treat a more general case.

1. The One-Dimensional Case

The basic equation involved is
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We also assume that at some given depth m there are no more

upgoing waves: Um =0.
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Figure 1. Layered earth model.

(1) Source and Free Surface Fixed

¢
This is the usual downward continuation scheme (see Fig. 2).
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Figure 2. Source and free surface fixed.
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The downward continuation operator is derived directly from equation

(2):

Un+l(z) = ;ET%;E;S-[ Un(z) +c oz Dn(z) ] (3)
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(ii) Source and Free Surface Moving

Figure 3. Free surface and source moving.

Using equations (1) and (2) with n=m we can write
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which gives
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which after some algebra gives

c, 2 + (l—clz) R(z)

R'(z) = (l+cl)(z-l)R(z)+(l+cl)z (6)

Multiplying through by the denominator, and comparing equal powers of

z will give an algorithm to find R'(z) The details are omitted.

(iii) Free Surface Fixed, Sources Moving

N ;

Figure 4. Free surface fixed, source moving.



Using equations (1), (2) we can write
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are the admittances looking 'upwards'.
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Combining (7'), (8'), (11), (12) we get
U - 1 [(U4c zD )(U_+c_zD +c_z )]
n+l 2 n n n n n n n
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n n
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Again, multiplying through by the denominator and comparing coefficients

of powers of z gives a recursion for finding U D from knowledge

ntl’ “nt+l

(iv) Source Fixed, Free Surface Moved Up to Infinity

This case is discussed in detail in Don Riley's thesis.
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Figure 5. The 'Noah geometry'.
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It is easy to show that

@) = s (14)

and as before, we can find recursion to compute ((z) from R(z)

Some practical problems that arise with the type of recursion
appearing in (ii), (iii), (iv) are mentioned in Don Riley's thesis, page
8-12.

2.. Extension of the Results to a Two-Dimensional Model

Assume we are performing an experiment as in Figure 6.

S S S
R R R
) [ [

1 ) N

cl(X)

Figure 6. The two-dimensional case.

and we arrange the data from the different experiments in matrix form,
i.e., Un(z), Dn(z) are N x N polynomial matrices, where the

(i,j) entry corresponds to source i and receiver j - Denote by M
the delay and diffraction operator that downward (upward) continues

Dn(Un) . If we assume that interaction between the up and downgoing waves
occurs only at the layer boundaries, we can get a similar formula to the

one—dimensional case:
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where Cl is a diagonal matrix with cl(x) on the diagonal.

For a more explicit definition of M 1look at the differential

equation
_ dw o, dv
Dz Ty D + 2w Dxx (16)
Its solution will have the form
G%g4“%§~3xx)Az %%—Az %! Az 3
D(Az) = e Dy = e e xxX Dy (17)
Now: .
L
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and iv iv iv Az
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Finally, using the bilinear transform, we get

142z
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Using the facts developed in this section we can repeat the calcula-
tions of the previous section, following the same derivation.

If we make the assumption that Cl s M and R commute, we get
exactly the same results as in the scalar case, with vz being replaced

by M . For example, equation (6) becomes
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[ (14€)) 0°-1) R(z) + (I+¢) 2 ] R'(z) =

(21)

_ 2 2
= €M+ (I+C;M°)R(2)

By inserting M from equation (20), multiplying through by the denominator
and comparing powers of z , we can get recursions as before. The
other equations go through in a similar manner, and the details are
omitted.

If we relax the assumption that the various matrices commute, the

equations become more complicated.



