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High Order Difference Approximations to the Differential Equation

- v(x,2z)
PtZ 5 PXX + f(x,z)

by Bjorn Engquist

1. Introduction

Consider the following partial differential equation, t 2 0 ,

P (t,x,z) = YigLEl P (t,x,z) +£(x,2) , v(x,t) >0 (1.1)

with initial condition
P(t, x, 0) = P,(t,x)

Different boundary conditions can be used like

P(O,X,Z) = 0
(1.2)
P (t, 0,z) = P (t,1,z) = 0
X X
or
P(O, x,2z) =0
(1.3)
P(t, 0, z) = P(t, 1, z) = 0

The =z -coordinate should be thought of as the evolution direction
for the mixed initial boundary value problem.

The differential equation (1.1) arises when analyzing seismograms,
see Claerbout and coworkers [1], [2] and [3]. It describes a restricted
class of solutionsto the scalar wave equation.

Let us present a simplified derivation to see which types of

arguments are used. For more details, see e.g. [2].
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The wave equation

1
—VZ Ptt + Pxx + Pzz = 0

can be transformed using
t'" =t ,x"=x,2"'"=z+vt

to

1 5, 2 v
V2 Pt't' v Pt'z' + Px'x' = 0

Dropping the P!

frer term has little effect on waves traveling

close tothe -z-direction, but eliminates all waves traveling in the
positive z-direction. Hence (1.1) is well suited to describe upgoing

waves whose fronts are close to perpendicular tothe z=-axis.

The problem (1.1) has been approximated by difference schemes
which use second order approximation in t, z, and x , see [2].

With methods which are higher order in the nonevolution direction
it is possible to get the same accuracy on a coarser grid. That
reduces the memory requirement and sparser sampled data can be used.
When high accuracy is needed it also gives much faster programs.

The purpose of this paper is to present and analyze schemes which
are fourth order in t , fourth order (or higher) in x and second
order in z .

The stability conditions are studied with the use of normal mode
analysis. Energy conserving properties and dissipative terms are

discussed. The accuracy is checked through the local truncation error,
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with numerical experiments and also with the Kreissand Oliger [4]
type of analysis. The latter consists of determining the number of
mesh points per wavelength which gives a certain error.

The approximations which are second order in t can be solved
by marching in t for each fixed 2z-level. There is no need for
extra numerical boundary conditions at t = tmaX ( OSI:StmaX )

This makes it easy to get explicit schemes or schemes which are
implicit only in the =x-direction.

A boundary condition for ¢t = tmax is needed for schemes which
are higher order in t and still have a simple structure. This is
shown by using the analysis developed by Dahlquist [5] regarding
A - stable ordinary difference approximations.

In the schemes we will use, this boundary condition does not enter

in the latest z-level. The difference equations can still be explicit
or implicit only in the x~direction.

2. The Difference Schemes

Let us introduce a uniform rectangular mesh
{t,, x
J

n - 3 - =
o ? }os i 0, ..., J, k=0, ..., K,

n=0,1, ... ; tj = j At, X = k Ax, zt = n Az

and a mesh function P? K approximating P (tj, Xps Z ).
b
Denote with a the ratio v At Az .
2
8 Ax

We will also define some difference operators. Indices are

omitted when they do not change in formula.
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X - 1 - 9
Pp P = ax (P B ) (-3x B
X - L _ 2.
PP = o (P~ Py) (~3x B)
t t A z .
D+, D, D+ and D_ are defined analogously.

The following average operators will be used

n 1 n+l n

Ql Pj = E(Pj + Pj+l )
n _ 1,6 ntl n+l n n
Q, Pj = % (Pj+l + Pj + Pj+l + Pj )

In this notation we can now write the second order approximations

to (1.1) which have been used for some time.

v (x Zn+l/2)
t .z k’ X X n _ nt+l/2
( D+ D+ - 5 Ql D+ D” ) Pj,k = f (xk, z ) (2.1)
n+l/2
v (x z )
t .z k’ X _X n _ nt+l/2
( pf 0% - > Q, Dy DX ) PY £ (%, 2 ) (2.2)
j = 0,...,J-1 ;k = 1,...,k-1 ; n = 0,1, ...

The initial and boundary conditions corresponding to (1.2)

are
Pg,k = PO (tj, xk)
Pg,k = 0 (2.3)
P?,O - P?,l’ P?,K - P?,K—l
Formula (2.1) is explicit since P?ii,k can be directly computed.
The equation (2.2) is implicit in the x-direction, but P?ii,k can

be evaluated by inverting a tri-diagonal matrix for each fixed n and

j=0,1, 2, ... . For (2.1) to be stable the condition is a <

|
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The local truncation error is defined by the error in the
difference approximation when it is applied to the solution of the
corresponding differential equation, see [6]. It is here of the
order O (At2 + sz + Az2 ), when the x-boundaries are Ax/2 and
1 - &x/2.

We want to improve the accuracy of (2.1) and (2.2) but still
have stable formulas which for each n can be solved marching in
j ( the t-direction).

We will not use a higher order approximation of Ptz but instead
compensate for the errors in the approximation of zigiE)Pxx .

Let us introduce two more difference operators.

2
n 1 n+l n+1 n n )
Q, P, = — (P, T -P, " -P,  +P,_) (~—%7P)
373 2At2 j-1 i i+l j+2 8t2
n 1 n+1 n+l n n 82 P)
Q, P, = —— (P, T - P, - P, + P, ) (~—
4 ] 2At2 ji-1 j+l i i+2 Btz
The higher order explicit approximation has the form
ez V(% 22 At?
(D, D/ - 2 (Q =735 Q) (1~ (2.4)
2
AxT _x 5Az At _x nt+l/2 X X n _
15 Dy DD+ g Dy DL v(x, z ) Dy DT ) Py
+1/2
5v(x z" )
- k’ X X n+l/2
= (1 + i3 D, D” ) £ (x, )
and the implicit approximation
nt+l/2
v(x,, z ) 2
t .z k At X _X
2 Az At v(x ,zn+l/2)
. S k )D. DX )) PY
12 24 + T- i,k
v (Xk’ Zn+l/2)

- X
= (1 - 2% Dy ¥ ) f (%5 zn+l/2)
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As initial conditions we use
P - P (i, x) (2.6)
jsk 0 i> Tk

The boundary conditions are not so important in practice and we

can think of the following low order approximations.

P = P = 0

0,k 1,k » Py = 0

Periodic in x (Period = 1) or

n n n n n n n n
P, = P, P, = P, P, = P P, = P,
Y js3 73,1 js2 7 "3,K j>K-3 7 "j,K-1 jsK-2
The latter corresponds to the condition (1.2) with x-boundaries
1.5Ax and 1 - 1.5Ax . Other boundary conditions are commented

on in the next section.

For both difference approximations the local truncation error is

o (ot + ax* + 222y .

The stability condition for (2.4) is a < 0.40 and (2.5) is stable
for all values of a .

The schemes can be modified in many ways to adapt to special
situations and they can also be simplified, e.g., when v is
constant. Let us note some variants.
1. If a is small the Az At terms can be dropped in the formulas.

The stability limit for (2.4) will then be a < 0.10 and the

4

error O (At + Ax4 + AzAt + Az2 ).

2. 1If also the sz terms are small and dropped in (2.4) (or (2.5)),

the stability limit is a < 0.12 and the error O (At4 +

2

sz + AzAt + Az7 ) .
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X X X X
D+ D™ a(x,z) and D+ D" f(x,z) can be changed to axx(x,z)
and fxx(x,z) if possible.

The compensation for the PXXXX error terms in (2.4) can be

concentrated to P?+l and P?+1 . When v is constant the
formula will be
2 2

v At Ax S5AtAz v
e (- T3 Q- Gy T

X n
NP LICIDE AR

Higher order difference formulas in the x-direction can easily be

used, i.e., for small a we can modify (2.4) in the following way

-Y(q _ At __(Ax2 DXDX—AX4 (DXDX)Z)DXDX)PH
e T QT QO QD DT - g @ (DLD] D) Py e

6 + AtAz + A22 ).

The local truncation error is then O (At4 + Ax
Even higher order approximations can be reached with the quasi-
spectral method [7]. Then the FFT (Fast Fourier Transform) is
used to determine the derivatives in the x-direction. The

equations could also be Fourier transformed in the t-direction.

If a 1is small, the implicit scheme can be simplified to

n+l/2
t_z V(Xk’z ) X _X sz X . x.-1 n
(D, D’ 5 (Q+Qg)D, D_ (1+ S5 DD )™ Pj’k =
+
- £ X, L0 1/2 )
n 1 n+1 n+1 n+1 n n n
where QSPj 2At2 (Pj_l-—ZPj -+Pj+1-+Pj -—2Pj+l+Pj+2 )

It is no longer unconditionally stable but has local truncation error
0 (At4-+Ax4-+Az2) . The stability condition is a < 0.10 .

Dissipative terms can be entered, see Section 5.

Let us write the left hand side of (2.4) and (2.5) in the form

of difference molecules for constant v . The axes are

J**—Fz

t
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-1
L -1 a 13 2 X _X Ax4 X _xX,2
% ( Ax D+D_—‘°]7(l—loa)(D+D_) ) (2.4Y
-1 137
——
-1 ;
‘ ot
11l 1:i 7 6
' L
—ti- % ( bx? DY D (1+ (%+ D hx? DY DY))  (2.5")
1| 1 6 | 7
—_—
-1
(0> DXD5P, = P, . -27P +p )
Py Pl k-1 k © Tkt
4, x x.2 _ _ N
(8x"(ODD)"B, = B, - 4P +6P bPp gt P, )

Note that the fourth difference in (2.4) vanishes if a = 0.1.

We have and we also will consider the explicit form more intensively

than the implicit one. The value of a 1is already often chosen

small from an accuracy point of view.

The difference formula (2.1) includes 8 points of the mesh and

formula (2.4) contains 22. The corresponding values for the implicit

schemes are 12 and 30. By considering point 4 on page 139 the number

22 is reduced to 18. 1If the explicit formulas are used in a straight-

forward way, these values are quite proportional to the number of multi—

plications in the inner loop.



The method (2.4) becomes much faster if the value of

X 4 X.X.2 n
DZ - &' (DyD7)") Py (2.6)

is stored for one j-loop (or one j-step). The expression (2.6)
corresponds to the case when v 1is constant. The number of multipli-
cations in the inner loop is reduced to 7 (or 10).

When using (2.4) or (2.5), only one n-level needs to be stored.

We are, however, forced to keep some values like the vectors PO

j-1
n+l

n .
and Pj in the memory when computing Pj+1 .



3. Stability

In this section we will consider constant

v . This means the

schemes (2.4) and (2.5) with constant coefficients. 1In general, it is

a good approach, even for variable coefficients, to analyze the

stability for the corresponding constant coefficient problems, see

[6].

We will first study the pure initial value
with periodic boundary conditions. We look for
following type

nt+l

|| P < &g |l P0|| , for f =0,

The array P" is the solution to the pure

for (2.4) or (2.5) and the norm is defined by

n )2

n 2
| R

|| P = AtAx X
]

z
k

It is easy to extend the estimate (3.1) to
terms ( £#0 ), see [6].

Theorem 3.1: The estimate (3.1) with K0=l is

problem or a problem

an estimate of the

zZ < z (3.1)
- “max

initial value problem

include inhomogeneous

valid for the solution

to the initial value problems (2.4) and (2.5) when f=0 .

Proof: We multiply (2.4) and (2.5) with AtAz

and Fourier transform in

t and x . Let us denote the dual variables corresponding to t

and x Trespectively w and kx . We will also use the following

notation:

s (w) cos

sin (TwAt ), c(w)

1l
1}

s(kX) sin (27 kX Ax ), c (kX)

(7mwAt)

cos (2w kx Ax )

141

(sum over all indices j and k )
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Formula (2.4) is transformed to

215 (P - PM) - (130w - 1s@)-(cGu)-1sG0)) B (3.9

+ ((13(c(w) + 1s@) - (c(3u) + 1s(3w))) P2 )¢ 2(e (K, )-1) -%‘—(l—lOa)
(1-ckND = 0

and formula (2.5) becomes

1 n+l +

21is(w)( PP Py - S 6e(@) +is@)) - (c(3w) -18s(3w))) P

+ (( 6c(w)—is))- ( cBuw) +1i s(3m)))§n)(2(c(kx)-—l) - (3.3)
-1 (1+4a) (e (k) -1)%) =0

A few comments on the derivation: The Fourier transform of a

translation is given by

~ - e2ﬂimAt ﬁ
j+l N

~ _ 2rik Ax 2
Prar = © x Py

After these transformations trigonometric formulas were used to

simplify the expressions.

Both formulas (3.2) and (3.3) can be reduced to the form

‘nt+tl _ A+iB ’n - n
P = A-iB P a(w, kX)P (3.4)
. . ~nt+1l ~n
where A and B are real. This gives hxl= 1, so that !P ] = ’P |

and hence no Fourier mode increases. Parseval'srelation guarantees (3.1)

with Ko=l .



The same analysis applies to the periodic boundary problem, and

-norm 1is

2

constant. The amplification factor a(w,kx) is also studied in

it also has this energy preserving property that the L

section 5.

Theorem 3.1 gives only necessary conditions for the stability of
the full problem containing boundary conditions. The effect of the
boundary conditions and the way the scheme is solved may still cause
exponential growth of the error. This will for example occur for the
scheme (2.4) if a 4is too large.

In the following analysis we corncentrate our interest on the fact
that we are solving the problem on a finite range in t . We assume
the boundary conditions in x to be periodic.

Consider the difference equations (2.4) and (2.5) with constant
v and £=0 .

The initial and boundary conditions are

PV - o
jsk
(3.5)
n _n n _ .n n _ .n
Prx = 81,k Pok 8y x * F1,k 81,k

Periodic boundary in k .

The estimate we are interested in has the form

N N
p 2
2R R2 sk x gl + g2+ el 2y, a6

n=0 n=0

i=0,1, ..., J

, and K 1is a constant.

where || B||2 = ax x|, |?
k

143
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We will use the Kreiss type of normal mode analysis, see e.g.
[8]. It can also be applied to inhomogeneous difference equations.
Taking f=0 does not change the result but simplifies the argument.
Our problem differs from the hyperbolic problems treated in
[8] in the way that the signal speed for (1.1) is infinite and hence
the two boundaries must be treated simultaneously.
Theorem: There is an estimate of type (3.6) for the equations (2.4)
and (2.5) with the initial and boundary values (3.5) if a<2/5 1in (2.4)

Proof: We Fourier transform (2.4) in j and Laplace transform in n .

~

O-1)( Py - Pj ) FCRI(A(- P,y +13 Py )

+13P, . -P.. ) = 0, |A] 21 3.7

Cl) = -5 (@Celk) - 1) -3(1-10a) (clk) - 1)%)

We have O < C(kx) < 4/45 4if a < 2/5 .
With the use of Parseval's relation it is sufficient to show (3.8)

to get (3.6).

co2 ~A 12 ~ 12 ~ 12
2,17 s kg |* + g, 1" +l851%) (3.8)
The characteristic equation corresponding to (3.7) is the

following

(A\-1) (k%=k) + Ck)(A(-1+13 k) +13 k% -k>) = 0 (3.9)

If (3.9) has the roots Kis Ko and Kq with [Kl|<1—e y
IK2[§1 and |K3I>l+€ (e>0) , then (3.8) is valid. Let us first

consider separated roots. The general solution of (3.7) is then
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I h| N j=J
Pj Al Kl + A2 K2 + A3 K3

If this enters in the boundary we get the linear system

-J R

Al + A2 + A3 K3 = gl
1-J ~

AlKl + AZKZ + A3K3 = 82
J J ~

AlKl + AZKZ + A3 = g3

The determinant of the system is bounded away from zero and (3.8)
is valid. If two roots coincide the use of ﬁj = ( Al-+j A2)|<lj +
+ A3Kg_J gives the same result. (IKll <l-¢)

Let us first check the roots for C(kx) bounded away from zero

and for large A . One root will be large and the others tend to the

solution of (3.10) when X >,

oo+ Cl)(-1+13c) = 0 (3.10)

For 0<C g f%- we have [Kl] <1l-g, |K2| <1 .

There cannot be any roots with IK] =1 for [X| >1 since that
would violate the von Newman condition which was checked in theorem 3.1.
In that case A corresponds to the amplification factor. We need only
to check for |A] =1 .

Let us rewrite (3.9)

3 2 A-1 A-1 _

kK- -« (13 + CE) ) +k( -132+ CE) ) A = 0 (3.11)
X X

Since 1 = |A] = ]Kl K, K3l either all roots have absolute value

1 or else we have the situation we want. It is straightforward to

check that [Kl] = IK2| = |K3| = 1 cannot be valid when



_ k=1
K1 + Ky + Ky = 13 + C(kx)
Kle + K2K3 + K1K3 = 132 + C(kx)

0<Ck) 0.1, |A]=1.

Finally, there are the two cases C(kX)+ 0 (IAI>].) where
all roots separate nicely and C(kx)-+ 0, [XL+1 where the arguments
following (3.11) can be used.

The proof of stability for (2.5) is analogous and is omitted.

This analysis is essentially a check that there is no growing
n 2wik Ax k

e X

solution P? = A

¢, with |A|>1 for any mesh function
ik ]

%
The case A»>» gives the bound for one z-step when marching in

t . The stability limits for the other schemes in section 2 are only

checked for A»ew .,

146



147

4. Accuracy

In this section we will study how many mesh points per wavelength
are needed to get a certain prescribed accuracy in some simple cases.
However, first we consider the order of the local truncation errors
of the difference approximations. This may not describe the errors for
large step sizes ( At, Ax and Az ) but gives the rate of decay of
the error when the step sizes decrease.

We do not analyze all variants of schemes, but we carry out the
proof in some detail so that it can be used for related difference
approximations.

Theorem 4.1: The local truncation errors of (2.4) and (2.5) are

are of the order O (At4+Ax4

+A22).
Proof: Straightforward use of Taylor expansions gives the following

results when the difference operators are applied to a smooth P .

n
(The arguments are ( tj’ Xys 2 ) to the left and ( tj+l/2’ X

zn+l/2 ) to the right of the equal sign if no arguments are written
out.)
t .z At2 4 2
D+ D+ P = PtZ + B Ptttz + 0 (At + Az7)
At2 AtAz 4 2
Ql P = P+ 5 Ptt -4 Ptz + O (At +Az7)
at? b2
QP = P+ =P +0(At +Az")
Az A22 2
QP = Pop "3 4 B T O AT
Az A22 2
Q4P = Ptt—EPtZ+O(—A—t—+At )
X X n+l/2 sz 4
D+D_P(tj+l/2, Xy Z ) = P +Tg5 P+ 0(x)
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If these formulas are entered into the difference equation (2.4)

. n+l/2
and (2.5) we get respectively (the arguments are ( tj+1/2’ Xys Z )):
p +At2P _ Y (p ne? _ 54t Ax
tz 24 Ttttz 2 XX 24 Tttxx 24 tzxx
+( 5 AtAz v + 5 Atdz Vxx P )) =
48 XXXX 48 XX
_ 5 At Az v
= f + 8 f
2 2
At A\ At AtAz

Ptz + 24 Ptttz T2 (Pxx + 24 T ttxx 12 Ptzxx -

-« AtAz v p + Atdz vxx P )) =

24 XXXX 24 XX
_ At Az v
= f 4 f

If we use the differential equation (1.1) all terms but
0 (At4 + Ax4 + Az2 ) cancel, which proves the theorem.

Let us briefly comment on point 8 on page 139. The operators
Q2 and Q5 do not produce any Ptz term. That is why the formula
is so simple.

As was mentioned in the beginning of this section, another way
to analyze the error is to see which step sizes are necessary to
follow a plane wave with a certain accuracy. This has been carried
out for difference approximations to first order hyperbolic problems
[4] and we follow that approach.

Let us concentrate on the error from the discretization in the
t-direction, and hence, let 2 and 2 stay as derivatives

dz ox

when approximating the following problem.
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e2ﬂim(ux-+t)

P(t, x, 0) . a >0 (4.1)

The second order and fourth order approximations will then

become
t 3 _ 1,3 j+1
D+ P, 2 (PXX + Pxx ) (4.2)
t 3 _ 1, .i-1 j 1 32
D+ Pz 24 ( Pxx + 13 Pxx + 13 Pxx Pxx ) (4.3)

(The time index is here written as a superscript.)

The differential equation has the solution

2
i +t+
P(t, x, z) eZﬂlw(ux t+oz)

Both schemes preserve the amplitude but they will give phase

errors.

Solution to (4.2): e2ﬂ1w(ax-+t-+a2(w)z)

Solution to (4.3): e2ﬂ1w(ax-+t-+a4(w)z)

By substituting these trial solutions into (4.2) and (4.3) we get

OLZ T wAt cos (7 wA)

“2(“) sin(mwAt)
o (w) = 2 TwAt (13 cos(mwAt) - cos(3mwAt))
4 ¢ 12 sin (7w At)

The phase errors for the two methods are

]
]

21wz ]az - az(w)[

e, = 2'nu)zfa2 - a4(w)|
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Let us with m denote the number of periods in z ( 0<z<m/ (waz)),
and let N be the number of points per wave, N = (At )_1 . We

consider phase error less than 7 so the maximum error is reached

This gives us

) cos ()
27m | 1 - S—2 (4.4)
sin qﬁ)

ez(N)

(%) (13 cos (—ﬂl\g) - cos(%‘))

e, = 27m |1 - | (4.5)

lZsin(%)

If the errors are developed in powers of N—1 and higher order

terms neglected we have

3
2 w7 =2
ez(N) ~ 3 N "m
5
22 7 -4
e, (N) ~ == N

Denote with Nz(e) and N4(e) the N values for the second

and fourth order methods respectively corresponding to the error e .

3
273 a 1/2
Nyt = (2I-E,
N()_(ZZWSm)l/4
AN 45 e

For 10% error (e=0.1) and 1% error (e=0.01) we get the following

numerical values:



NZ(O.l)

NZ(O.Ol)

il

N4(O.l)

N4(O.Ol)

Using (4.4) and

14.4 ml/2

45.5 ml/2

6.2 mll4

11.1 ml/4

(4.5) instead of the truncated series expansion

does not change the result. The difference in N 1is less than 0.05

(for m=1 ).

Another way to check the error is of course numerical experiments.

There are some presented in the last section.
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5. Dissipation

Let us consider the initial value problem for the differential
equation (1.1) with constant v and f=0 . Each frequency (w,kx) in
the solution preserves its amplitude for all z . 1In the proof of
theorem 3.1 we saw that the same is valid for the discrete approximations.
The amplification factor had absolute value one for all frequencies.

In some cases it is desirable to damp the high frequencies which
are not accurately treated by the difference scheme. This can be done
by changing the method such that the amplification factor is strictly
less than one for those frequencies. The scheme is then called
dissipative or said to contain artificial or numerical viscosity, see
[6]. Entering dissipative terms should, if possible, be done in such
a way that the order of approximation does not decrease.

We consider the following terms which can be added to the left

hand side of formula (2.4). (e > Q)

4, 2

Ax At t .t .t X X 2. 1n

TD+ D~ D+ (D+ D~ ) Pj,k (5.1)
Ax6 X X .3 n n

ot bz (Dp D)7 CBy o + Py o) (5.2)

Both terms can be added at the same time. The local truncation

4, 2 6
eAx At ) or 0 ( £ Ax

Az At Az )

error of (2.4) will be amplified with 0 (
respectively.
Stronger dissipative terms with larger truncation error like

2,.2
R Ax" At Dt t

n
Az + D—

t X X
D+ ( D+ D_ ) Pj,k

or nonlinear terms like

t

4
At n t _t
e S [ DD_ Pj,k[D_l_ D_ D,

can also be tried.
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The best choice must be determined from practical tests.

Since the denominator in the amplification factor a(w,kx)
vanishes for certain frequencies, the coice of dissipative terms is
limited in order not to violate the vonNeuman condition. Let us check
for (5.1) and (5.2) and denote the corresponding amplification factors
B and vy .

Theorem 5.1: |8| <1, |y| <1 for all u, k. gl <1 for

sin(mw) sin(Zﬂ'kX) 0, [y! <1 for cos(mw) sin(2n‘kx) £ 0 .

Proof: Let us first label the different parts of « (the amplification
factor of (2.4)):

I A Ll 1o W

i al(w) + az(w) a3(kx) iA+3B

where al(w) = 2 s(w) + f%-( 13 s(w) - s(3w))

o, () = % ( 13 c(@) - c(3w))
- 1) -2 (1-10a) (1- ek )2
0‘3(('0) = 2 (c(kx)'— )_ 3 ( - a) ( - C X)
i A'-B i A-3B'
ST Taws 0 YT Tasp  vhere
A'= 0 () - 16 € s(w)( c(20) -1)( 1 - c(kx))z
B' = oy ag(k) - 16 € c(w)( e(k) -1 )3

The stability part of the theorem is true if |A'|<|A| and |B'|<|B|

This can be shown from the following relations:
al(w) / s(w) > ¢
az(w) [/ clw) > §

ay(k) / (1= e(k)) > 8
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for a< 0.4 and some positive number & . Similarly [A'[<|A] if
s(w)s(kx) # 0 and lB' ]<IB[ if c(w)s(kx) #0 , which proves the
theorem.

For small Atw and Ax kx we have

9 At4 Ax4 w4 ki
]BI ~ 1 -c¢ . €, 5 Cc,> 0
1 At2w2+c Ax4k4 1 1
1 X
9 Ax8 kx8
|Y| ~ l - €2 4 4 ’ €2 > O
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6. Limitations on the choice of schemes

To increase the understanding of approximating (1.1) we will
determine some limitations on the possible choice of schemes due to
the requirements of accuracy and stability.

We consider linear schemes of the following form.

M R S

2 X I (a
m=0 r=0 s=0

m  v(x,z) .m ) Pn+m = 0 (6.1)

rs 2 rs jtr,kts

where (x,z) 1is some point in the mesh. (Assume f=0 in equation
(1.1).) The formula (6.1) is normalized, i.e., when applied to a smooth
P the sum containing only a factors gives Ptz + 0 (At +Ax+Az ) and
the sum with g factors PXX + O (At +Ax+Az ). The factors o and
B are real.

One of the leading terms in the truncation error in (2.1) and
(2.2) was proportional to PXXtt . To approximate that term only three

points in the t-direction are needed. In scheme (6.2), written in

schematic form, we have made that compensation.

1 -1 1

1 ‘ 4ba X X _
AtAz ( - 3 2121 D, D )P = 0 (6.2)

The approximation (6.2) is explicit and has the local truncation

4

error 0O (At -+Ax2-+AtAz-+Azz ). It also fulfills the von Newman

condition. It is, however, not stable as a mixed problem for any value

o and P"

of a , with boundary conditions at PO,k Lk




In fact, no O(At4) scheme can be stable with boundary conditions
only at t=0 ( j=0, 1, ..., R-1 ). That follows from the following

theoren.
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Theorem 6.1: Difference approximations of the form (6.1) which are stable

in the sense of (3.1) and (3.6) and have all boundary conditions in the

t-direction given at t=0,

n _ n

Pik T Bk

j=0, 1, ..., R-1 (6.3)

have at most order of approximation equals 2 in the t-direction.
We postpone proof to the end of the section.

To get higher order of approximation extra conditiomns at t==tmaX
must be added. That will in general give rise to large implicit
systems which must be solved for each n~step. The trick we used was
to enter this extra boundary condition on the n-1 1level at t=t
For this to work, at least four points are needed in the t-~direction.
Theorem 6.2: Difference approximations of the form (6.1) which are
stable in the sense of (3.1) and (3.6) with R=2 and M=1 cannot
have order of approximation equals 4 in the t-direction and still
be explicitly solvable marching in t .

There is also the possibility of using other than linear schemes
in the t-direction, like implicit Runge-Kutta methods. Probably
higher order methods of this type with boundary conditions only at
t =0 can be derived. They will be quite slow.

We have so far consentrated on errors due to the discretization

in t . Let us comment on the Ax and Az errors.

max
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As was mentioned in point 5 on pagel39, it is easy to increase
the order of approximation in x by using wide symmetric formulas.
The number of mesh points in the formula will however also increase.
To get O(szP) we need 2p+1 terms in the x-direction.

It is much harder to improve the accuracy in the z-direction.
Here we have the same type of limit as in theorem 1, and we cannot in
practice impose conditions at 252 o like we could at t==tmax
if we want 2z as evolution direction.

Finally, a short comment on hyperbolic problems: The argument
in theorem 1 applies to linear and symmetric difference approximations
like Crank-Nicolson or Leap-Frog. The result is that it is not possible
to get more than second order accuracy in time for unconditionally stable
methods.

Let us define a linear multistep scheme (6.5) approximating the

ordinary differential equation (6.4). See [ 9] for more general cases.

x(t) = q x(t) » t 20 (6.4)
x(0) = X
R R
rzo o xr+j = At q rio Br xr+j s j=0,1, ...
(6.5)
Xy s X1 5 oo Xp 1 are given

The scheme is said to be A-stable if xj-+ 0 as j—->« for
fixed At and Re(q)< 0, see [5] ( Re denotes '"the real part of").
We also introduce the polynomials

o Cr and o(z) =
0 i

plg) =

|| eI~

r
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and assume that they have no common factor, and that a. and Br

are real, see [ 9]. Consistency between (6.4) and (6.5) implies
p(l) = 0 , P'"(L) = o)

Lemma: If a solution X, to a consistent linear multistep scheme
is uniformly bounded for all v with Re(q) = 0 then the scheme

is A-stable. Proof: We want to showthat p(Z) /o(z) is regular and has
nonnegative real part for ]c|>l . Then lemma 2.1 in [5] guarantees
A-stability.

The characteristic equation corresponding to (6.5) is

P(c) = q bt o(7)

Stability for all Re (q At) = 0 gives the relation

Re (qat) =0 > [g|<1

or

lz] >1 =0 Re(qat) # 0 (6.6)

Following the arguments in [5] we assume that p (z) /o(z) 1is
not regular at Lo [col >1 . That is G(CO) =0 and p(g) # 0
since P and ¢ have no common factors.

P /0@ = alz-ty)P +0 (|t

Here a#0 , and p is a positive integer. This gives that p (¢) / 6(g)
takes on every argument close to 7 . In other words, there exists

¢y » |t/ >1 such that Re (p(z;) /o(zy) =R (qAt) = O which
contradicts (6.6). Hence, p(z)/o(g) 1is regular for ]cl >1 and

its real part is different from zero. That the real part is positive



follows from consistency:

p(l+e) _ p(1) + ep0' (1) _
o(l+e) o) +0(e) = 1l+e+0(e), >0

Proof of theorem 6.1: When all boundary conditions in the t-direction

are given at t=0 , the difference equation (6.1) must be stable as
an initial value problem in t . After Fourier transforming in x

and z , (6.1) becomes

. i _ v - -
oLr(kz’kx) Pr+j T2 Br(kz’kx) Pr+j (6.7)

0 r

[
I =

r 0

The consistency requirement implies

~ vszki R . -
0 ( o‘r+O(kz-l-kx))Pr-+'_‘] T T 2Athz rEO( 6+’0(kz+kx)) Pr+-j

ik
z

I ™=

r

where the constant coefficients aj » B. are real. For the original
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J
difference approximation (6.1) to be stable, (6.7) must be stable fgr )
Axé4 k
all k_, k . For example, it must be stable when k , k - 0 s —_x C
X z X Z AtAz

and hence (6.8) must be stable for all Re(C) = 0 .

R iAtvC R
- 0‘r Pr+‘ - 2 z Br r+j
=0 J r=0 J
(6.8)
B = éJ , 3=0,1, ..., R-1

The formula (6.8) is a linear multistep method approximating

P = ivC P

c 5 . The lemma implies that (6.8) must be A-stable, and

theorem 2.2 [5] then gives that the maximal order of approximation is

two.



160

Proof of theorem 6.2: After Fourier transforming in x and 2z we

get a scheme of the form (6.7). The only possible fourth order scheme

will have the following coefficients, modulo higher order terms in

k. and k
X z
G, = -2 4. =0,4, =21
0 271 > 72 2
5 - 1 524 5 _1
o =6 > P16 BT %
Compare with [9]. The coefficients &0 = -1 and &2 =1
|
implies that before the transformation in the z-direction a. # 0

0
'

and &2 # 0 . Theorem 6.1 gives that conditions must be posed at

both boundaries. 1In order not to link the boundaries together, and

1] ¥
hence get an implicit scheme, either ag or ey must be zero.
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7. Numerical experiments
1. The initial values and boundary conditions for the analytic
solution P = sin(27wx) sin 2mw(t+z) , of Ptz = PXX , were given.
The mesh contained 10 interior positions in x and t , and 20 z-steps
were calculated. We give the discrete L2—norm of the error in
%z for Ax = At =1, Az = 0.15.
L scheme (2.4) scheme (2.1)
2Tw
20 0.012 0.44
12 0.14 2.3
6 3.5 18
4 24 62
Note that the results correspond to different z-~levels for different
w . The ratio between the errors are quite close to the one given
by the local truncation error, even for a few points per wave.
E for Lo 6, and L. 12 have:
&- 27w ’ 27w we e:
3.5 . 1 18 . 1
b
0.14 25 23 23
2.

We have also solved Ptz = Pxx with & -~function like intital

values:

—=* 1 2
0 . .

P, is given by\l

jk ‘

and is zero elsewhere (zero boundary values).

We used At = Ax=1, Az=0.15 with (J,K)=(80,121).
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e Yt order te e

“4 U

<

+ My dr Lo iyl v Ny J=-10)

Szl an (M= 1yd=1)~25G0{li=lydI+SlN=1,ydt1 )} )+
Ny d= L) = G iN I+ ling I+ 1+
PAMNEl =1 )="7P (N4l y JI+F{RN+1,d+7 )
~ (P H Ly =1 =27P 42, J)+P{N+2,0+1 )3

ST o4 LGNy J=0 ) =a Ry Jm 1) #OF Ny J =40l J+ L ) HG{N U+ 2) +
Bl lyd=2)=a P { N+t Ly =1 )+0=F (Nt Ly J)~4xP{N+LyJt+]l J+P{N+14yJ+2)
i

wANH Ly d )=y
CLaT g
TOOLY aamLend
Seond JFLeRA
P lingdi=aingJdl
ol TInOE

TP/ 1eT4aFUak) CALL PLAXIPyNToNX) PLOT EVERY 20th

1“ l"\oLT. o ‘\;vfi.“' 25

CQU CF I-Liof 2 sTer
ST ot
e

Fig. 1. Program for fourth order accuracy in x and t . It has
not been "cleaned up" for presentation or efficiency. This program
produced the results in Figure 2. The lines marked "fourth order

terms' were removed to get the second order accuracy results.
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steps

z

20

9.4
q!

.l

»’l

Z steps

40

Second order

Fourth order



and order o Y& opder
(i

p ”*b

v
-—

165

—
P
=
F
F

Fig.2, Results of program of Figure 1 for second order accuracy (left)

and fourth order (right). Note from the program that the x-axis was
divided into 120 points but only every third one was plotted. The
time axis has 100 points. The initial disturbance starts at the tenth
time point. This initial disturbance was chosen to have a lot of high
frequency energy which would not be easily modeled by difference
equations. This short wavelength energy disperses much less for the

fourth order. See for example the eighth channel from the right.

Iy

100
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