10 July 1975: se 75

Estimating the Shifting Function

by Philip S. Schultz

We have shown examples of migration in which the slowness

function s(x,z) in the equation

Pzt = 5(x,z) Ptt (L

is non-zero for some small range of =z (Schultz, SEP 5, p. 66-78).
If s(x,z) 1is zero except for the range z; to zq + Azs , then we

can write the solution to (1)

P (x, zl-+AzS, t) = P(x, zl, t~+TS(x) ) (2)
where 2. +Az
1 s
TS(X) = -§s(x,z) dz (3)
21

Note that although Ty is a function of both x and z , the thin
lens approximation allows us to separate the dependence. We therefore
have the shifting function T, as a function of x only, but applied
to the wave field at some 2z value which is close to zy -

Figure 1 illustrates this concept. Note that the migration
velocity, v , is not a constant. We are implicitly migrating using
a stratified media slant frame described elsewhere in this report.

From this point in the discussion onward, we will be concerned with
the estimation of TS(X) rather than s(x) . TS(X) is the time-shifting
of the wave field and can be estimated directly from the relative time
shifts between traces, while some knowledge of the nature of the

functional dependence of s on 2z is needed to use equation (3)

to obtain s from TS
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Fig. 1. z,t plane showing migration velocity v(z)=v'(t) and

depth 2z, where shifting TS(X) is to be done.

1

An interesting correction occurs to the time shift, Ty when
incidence is at some angle 6 from the vertical. If we have a depth
range AzS over which the slowness is independent of Az , our time

shift will be for vertical incidence,
Ts (x, 6=0) = s(x) Azs

For an angle 6+# 0 , we can imagine the effective depth range to go

to AzS sec 8. This gives an angle dependent time shift to be
TS(X,G) = T (x, 6=0) sec © (4a)
or
2-2 .-1/2 4b
1 Gop) = T, (x, p=0) ( 1-p 2y (4b)

where 6 and v are the local values at z=2; .
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As a final reminder that we are using the thin lens approximation,
the time shifts that we observe from trace to trace which are caused by
transmission effects are, in fact, given by an integration of the slowness

over the ray path.

A TS(X,Z) = g s(x,z) dr (5)
path to (x,z)

We are first making use of the thin lens approximation which allows
us to integrate over a straight line ray path some angle 6 from the
vertical (instead of a curved ray path); and second, we are specifying
that the slowness function, s , (and therefore also the time shift

TS ) be non-zero only over some range =z to =z ‘+Azs . The particular

1 1

model we are then restricting ourselves to is shown in figure 2.

5

Fig. 2. The earth model we are considering. All the shifting

takes place at zq and over some (unknown) range AzS .

At some depth around z, are coherent reflecting horizons which will

show the effects of the transmission distortions at zl .
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There are (among others) two approaches we may now use to estimate
Ty - The first involves correlating the traces with some window around
a reflector at zy - The depth z, must be close enough to depth zq
such that we may claim commutivity between the diffraction and the shifting.
We will then have three contributions to the total time shift for each

trace (the downgoing path at Zq s the upcoming path at =z and the

l b

reflector topography at =z which we will try to resolve by the

,)
redundancy in the data (stacks over more than one p value). The
second involves correlating the traces with a window over reflectors at
all depths greater than zq > in an attempt to average out the shifts
due to the downgoing wave path and the reflector topography. We will
investigate these separately.

Let us consider the former option with a correlation window about

a reflector at some z Do we need to downward continue the

near z
2

1

data? Figures 3 to 5 show why this is essential in order to minimize

error. Figure 3 shows the region through which energy will pass on its

way to the single geophone at the surface, assuming the gathers have

been slant stacked over some 6 and that reflector dip and irregularities

perturb the wave path by no more than 15°. No distortion of the wave paths

propagating through the region at depth zy is due to the commutivity assumption.
Figure 4 shows that this region of energy acceptance for the geophone

is significantly narrower after downward continuation of the slant stacked

data to depth zy - Notice, in particular, the increased resolution in

sensing the shifting function at 21 with excellent resolution for the

upcoming path and improved resolution for the downgoing path. 1If

downward continuation proceeds to z, (ignoring the shifting that
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Fig. 3. Beam of acceptable energy for slant stacked sections of
angle 6 . The downgoing wave maintains its plane wave
character until reflection. Diffracting effects of TS(X) at

z; are not shown because of the commutivity assumption.

Fig. 4. Beam of acceptable energy for data downward continued to
zq - Note the improved resolution of the shifting function

TS(X)

Fig. 5. Beam of acceptable energy for data downward continued
to z, without shifting at zq - Dashed lines show resolution

loss of rs(x) because of overmigration. The total resolution

of TS(X) for both wave paths is the same as in Fig. 4.



should be done at Zy T~ our commutivity assumption allows this), the
resolution in sensing the shifting function is not increased (however,
maximum sensitivity now lies with the downgoing path), but we have

the advantage of being not farther than (zz-—z away from either of

1’
the two transmission shifting operations.
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Fig. 6. The schematic wave paths calculable from the migration

velocity, v(z) , and for a particular p value.

Figure 6 shows a possible ray path that we can calculate from the

migration velocity, v(z) . The surface geophone coordinate is X s

and X5 Xy, X5 are the horizontal coordinates (unprimed frame ; i.e.,

normal x and 2z coordinates). Notice that x s x2 and x can

1 3

be calculated from v(z) > Xg s and p with the relations
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-1
X; = Xg - S tan 6 (z) dz
0
z
1 _
= x - p v(z) dz 6)
0 go (1-p%52 (2)) /2
%2
X, = X —% tan 6 (z) dz
"0
z, _
. _S p v(z) dz 7)
04 i Ent/?
) )
Xy = X —g tan © (z) dz - S tang (z) dz
0 z
z, _ 1 z, _
= x_ - S p v(z) dz _ S p v(z) dz )
O 0 a-p’Pent/? (1-p%7% (2))1/?

1

Although the above calculations assume a non-diffracted ray path,

we are minimizing diffraction effects by downward continuation to z, -

Let us now assign a time shifting as a function of the x coordi-

nate to the reflector at z, in order to include reflector topography.

The total time shift, T , for the trace at X, as a function of the

stacking parameter, p , and referenced to some standard trace, is

T(xo, p) = Ts(xl) secel + TS(X3) sec@l + Tr(xz) sece2 (9)

where 6 and © are local to =z and z

1 9 1 respectively. Or,

2

T(xgs P) = T (x)) (1-p"(2)) )-1/2
ot (xy) (1-p% (2 )72

T (xy) (1-p2\72(z2) y-1/2 (10)
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Let us now represent the positions X X, and X4 by the

indices i , k and j respectively. We have

Ts(xl) > 5, (11a)
TS(X3) - Sj (11b)
rr(xz) > Ry (11c)
T(xo,p)->Tijk (11d)

and we note that k= ( i+j)/2 .
As a simplification to the following analysis, let v(z) vary

slowly from zy to z, SO that

-1/2 .

(1 -5z ) (1 - 9%z, )2

We now have the set of equatiomns

Tijk = Si + Sj + Rk (12)
and we are interested in the homogeneous solutions
T.. = 0 (13)

to determine any intrinsic ambiguities.
Using a technique common in statics analysis (see, for example,
Taner et al, Geophysics, v. 39, #4, p. 441-463, 1974), we represent the

variables by a power series. We define

, .2
Si = a, + aji + a,i + ... (l4a)
_ . .2
Sj = b0 + le + b2J + ... (14b)
R = ¢, + 2c. k + 4¢ k2+
k 0 1 2 Tt

. c a2
o + Cl(1+j) + C2(1+j) + ... (1l4c)



We adjust the coefficients of (14) so that it will be a solution to

o .m

(13) by identifying coefficients of i j

a,+b, +c

0 0

and

0

fl
o
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It
(@]
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m=0 )

= 0 (n=1, m=0)

= 0 (n=0, m=1)

= 0 (n=2, m=0)

= 0 (n=0, m=2)

= 0 (n=1, m=1)

from self-consistent geometry, and

which gives

- (a0+b ) = -2a

0

-2 aO - al (i+3)

(15a)

(15b)

(15¢)

(15d)

(15e)

(15£)

(15g)

(16a)

(16b)

(16c)

(17a)

(17b)

(17¢)
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Therefore, the determination of time shifts Tg and T will be

uncertain up to a linear term, and calculation of time shifts of adjacent

traces will show an insensitivity to long wavelength variations with
x of the shifting functions, <t .

Let us now turn our attention to a second option for estimating
these time shifts. 1In this case the correlation window will be the
entire trace below zq and an attempt will be made to average out all
the transmission effects with the exception of that due to the
geophone (i.e., transmission distortions on the upcoming wave path).
In this way our time shift measurements will reflect the geophone
"static" and no other, so that a formal solution to equation (9)
will not be necessary. The attempt is to average in such a way that
the TS(X3) and Tr(XZ) terms in (9) will be zero.

Since we are enhancing the effect of the geophone static, the
logical depth for downward continuation in this case is zq -
Figure 4 shows that resolution of the upcoming wave shifting function
will be optional at this depth. 1In addition, the lesser resolution at
the downgoing wave shifting and at the reflector will serve to enhance
any attempt made to average these effects to zero.

In addition to a large time window to average the downgoing wave
static, several p values will be available (ranging from
Pmax=n>emax to pmin:=>emin ) in an attempt to average the effects of
reflector topography. Figure 7 shows ray paths, with common receiver
positions at zq > for two p values with an implied set of inter-

mediate p values. The darkened lines show the regions over which

averaging will take place.

85
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Ray paths for common geophone traces in the two extreme slant
and
X

Fig. 7.
sections. We assume a continuum of p values between Poa
z, and z, - The

and a continuum of reflectors between

Pmin
darkened lines show the regions over which averaging will be done.
zq to increase

Note that the data has been downward continued to
for the upcoming wave.

resolution of TS(X)



Let us quickly estimate the effectiveness of this averaging

by assuming a continuum of p values between p and p_. .
max min

The zone of averaging is different for each reflector and the trans-
mitter at z; > see Figure 7, but let us turn our attention to any
one of those regions of horizontal dimension X . When two adjacent
traces in a given p section are correlated, the result will be
sensitive to the slope of the topography. Assuming a single Fourier

component for topography,

2T %

A
X

topo = A sin

where AX is the horizontal topographic wavelength. Then,

1 _ 2m A 2 X
slope = X cos —
X X
Now, SX 2mA 271x
cos —— dx
A h\
0 'x X
aver slope = X
S dx
0
- é_Sl 27X
x SR
X
but since
2TA
max slope = S
X
we have
A
aver slope _ x . 21X
= sin
max slope 21X Ax
Ax Ax
S xsms Tt x (18)
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Equation 18, as we expected, shows that the averaging is most
effective when the region of averaging, X , is large compared to
the wavelength, AX , of the topography. This result again shows a
difficulty in dispatching long wavelength fluctuations in dip, and
just as in the previous estimation approach (equations 17), they
will have to be separated from the shifting estimate by other means.
Neither of these two methods have yet been tried on field data,
but my suspicion is that the second method using a larger correlation
window will be more practically feasible. I expect the larger
window will aid in noise reduction, and that the averaging will
eliminate the dependence of the estimate accuracy on the accuracy

of G(z)] = G(z)[ - The second method requires only that
all z all =z

v(z) | = V(2) ]| .

z<z z<z
1 1



