24 July 1975: se

Multiplets

by Jon F. Claerbout

On a seismic section a given multiple reflection arrival can
split up into a fine structure of several arrivals. Such splitting
occurs only when the dip is non-zero. Split up multiple reflections
will hereafter be called multiplets. An example of a pegleg multiplet

is shown in Figure 1.
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Figure 1. A geometry in which a pegleg multiple reflection splits
into a doublet called a multiplet. (Non-flat regions are

discussed later.)
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A CDP stacked section provided by Western Geophysical Company
is shown in Figure 2. It inspired a model for which vertical incidence
synthetic data is shown in Figure 3. Figure 4 shows non-zero offset
synthetic data. The offset chosen for Figure 4 actually increases
linearly with time (to keep the angle of propagation nearly constant)
in such a way as to reach half the cable length (half of 10,000 feet)
by the bottom of the section (about 3.8 sec). The splitting of the
first sea floor multiple on the slope is seen to give well over a
half second gap. No splitting is visible on the stacked field data
because the stacked data is a sum of many offsets so that the
multiplets are too numerous and uniformly distributed to be visible.
Consistent with this idea is the comparatively weak multiple on the
early dipping part of the stacked section.

The multiplets of Figure 4 were generated with a simple algorithm.

Figure 5 and equation (1) together illustrate the multiplet algorithm.
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In equation (1) the variable Uty is the upcoming wave associated
with midpoint y at time t . Likewise Dty is the downgoing wave
and cty is the reflection coefficient as a function of travel time
depth. By associating a wave with a midpoint we envision that half
of the energy moves from left hand shot points to right hand receiver
points and half goes the other way. We now introduce the initial

condition that the downgoing wave Dty =6 is an impulse at zero time

t

and that the upcoming wave at the surface reflects with sign reversal
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Figure 3.

Synthetic seismograms for vertical incidence multiple reflecticns.
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Figure 4. Multiples on dipping section split into multiplets. (See also cover

for higher gain.)
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Figure 5. Basic geometry for the multiplet algorithm.
to make further downgoing waves, Dty = - Uty for t > 0 . Then
(1) takes the form
t-1
y - _ .y _1 y+T _y+T =T _y-T
Dt “t 2 z t-T T + Ct-1 DT (2)
=1
Equation (2) may be solved recursively for Dty given cty .

Surprisingly the inverse problem solving for cty given Dty is

identical to the forward problem!

Figure 6 contains a checkout program and a subroutine (NOACMP, NOAh
Common Mid Point) for the forward or inverse multiplet algorithm.
Figure 7 is a printout of the input model (which resembles Figure 1).
The input model printout was identical to the reconstructed model

printout. The multiplet arising from this model is shown in Figure 8.
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5. C TEST MULTIPLET ALGORITHM

6. DIMENSIUN C(52,10),D(52,10)
7. NY=52

8. NT=10

9. DO 10 IY=1,NY

10. DO 10 IT=1,0T

1. 10 C(IY,IT)=0.

12. DO 20 1Y=1,26

13. 20 C(1Y,3)=,05

14, DO 25 1Y=26,NY

15, 25 C(IY,5)=.05

164 DO 30 IY=1,HY

17. 30 C(IY,6)=.8

18. DU 40 IY=1,NY

19. 40 DCIY,1)=1.

20, CALL OUT(NY,NT,C)

21. CALL NUACHMP(NY,NT,C,D)

22. CALL OUT(NY,NT,D)

23. CALL NOACMP(NY,NT,D,C)

24, CALL GUT(MY NT,C)

25. STOP

26, END

27. SUBROUTINFE NUACKP(HY,HT,C,1)
28. DIMENSIUN C(NY,NT),D(NY,NT)
30. DO 10 IT=2,NT

31. DO 10 IY=1,NY

32. 10 DCIY,IT)==C(IY,IT)

33. DO 20 IT=3,NT

34. NZ=IT-1

35, DO 20 IZ=2,NZ

36. LAT=(IT-12)

37. IY1=LAT+]

38, [Y2=NY-LAT

39. ITZ=1T-1Z+1

40. DU 20 1y=IY1,IY2

41, IP=TY+LAT

42, [4=1Y=LAT

43, TERM= ,o* (C(IP,IZ)*DCIP,ITZ)+C(IM, I Z)*xD(IM,ITZ))
44, 20 DCIY,IT)=D(IY,IT)=-TERA

45, RETURN

46, END

47. SUBROUTINE LUT(NY,NT,C)
48, DIMENSION C(NY,NT),LINEC100)
49. PRINT 10

50. 10 FORMAT(”/1 NEXT SECTIONZ)
51. DO 30 IY=1,NY

52. LO 20 IT=1,NT

53. 20 LINE(IT)=100.5*C(IY,IT)

o4, 30 PRINT 40,1Y,(LINECIT),IT=1,HT)
55. 40 FURMAT( 8X,1216)

56. RETURN

57. END

Figure 6. Subroutine and checkout program for multiplet generation

and inversion.
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Figure 7.

multiplet algorithm.
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Pegleg multiplet arising in checkout program.

Figure 8.



Our most ambitious goal in this research is to accurately predict
and remove the multiples and multiplets on the various slant stacks
before they are combined in a final stack. This will certainly
require a good shot waveform estimation procedure.

A more modest goal is to use the multiplet algorithm (and
possibly migration) to generate only the synthetic multiples which
arise from strong events. These synthetic multiples and multiplets
could then be rectified and smoothed to provide inverse weighting

functions to be used before conventional CDP stack.

Notice in Figure 4 the large size of the window between the two
multiplets of the sea floor first multiple. Note also on Figure
4 the triangular region of missing data along the left margin.
This triangular region is indicative of the offset of this synthetic
data. In this case the offset is only about 23 traces or half the
cable length at the bottom of the section. Clearly, the gap within
multiplets can be even larger at larger offsets, and there should be
some big windows to look through at the primaries.

The multiplet algorithm would seem to be strictly valid only
for layered earth models where reflection coefficient amplitudes
vary slowly along the reflectors compared to a wavelength. But a
mathematical limit of such models will produce dipping beds. Bedding
dip must also give rise to diffraction and migration phenomena not
included in the multiplet algorithm. Presumably these can be handled
in the fashion of SEP-3, Don C. Riley's PhD thesis. The multiplet

algorithm was developed to broaden the applicability of Riley's
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work to wide offset sections. Doherty's work on large offset, SEP-4,
covered wide offset on upcoming waves but did not couple the up and
downgoing wide offset waves. Earlier work in this report and SEP-5
looks less symmetrical than the multiplet algorithm. However, studies
beginning on page 36 seem to indicate that the multiplet algorithm
probably applies to common geophone (or shot) slant stacks and not to
common midpoint slant stacks as I first believed. I had hoped to
derive an equation governing common midpoint slant stacks which within

various scale factors might look like

Bz U(y,t) = S;Y U(y,t) +c(y+z,z) D(y+z,t-2z) +c(y-z,z) D(y-z,t-2z)

Analogous equations are found in SEP-2, p. 307; also in this report
"Coupled Slanted Beams, Equations for Multiples Program', on page 35.

We found we had some difficulty in understanding why the
sea floor multiple in Figure 4 split into two. The explanation for this
shows why we believe these algorithms apply to slant stacks instead of
radial traces. In studying the example of Figure 8.5, keep in mind that
a "radial trace" is a bit like a trace from a constant offset section from
conventional point source data, whereas a slant stack represents a plane
wave source. It seems to require less inhomogeneity to produce multiple
arrivals for a plane wave source than a point source. I suppose that it
is often a reasonable practical expedient to utilize the multiplet
algorithm equation (2) without diffraction. Justification might be
that offset angle is most commonly larger than the earth dip angle.

Finally, I would like to append the program which generated

Figures 3 and 4 and add a few practical details. It was important

that the lateral shift should be less than one midpoint per time point.
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Fig. 8.5. The number of arrivals on a slant stack may easily exceed

the number of arrivals from point sources.

26



27

In the program of Figure 9 such reduced lateral shifting was made possible
by the TANDD parameter which was zero for Figure 3 and about .1 for
Figure 4. A few preliminary runs showed that linear lateral interpola-
tion was a worthwhile improvement over closest neighbor interpolation.
In reorganizing the program to take arbitrary initial downgoing
waveforms the ability to do the inverse algorithm with the same program
as the forward algorithm was lost. Luckily the compiler used considers
the product of two half word integers to be a full word integer;
otherwise fixed point overflow would have occurred in the product of the
downgoing wave D times the reflection coefficient C . It would

be safer to do the program in floating point. Half word integer
calculations were done to save memory. The use of integer calculations
is justified by some exponential scaling transformations. The model
generation program MODELW in Figure 10 has the task of laying down on

a mesh a delta function at an arbitrary time point. Subroutine ADDELT

does this by means of the Schultz function, SEP-5, p. 79.
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Figure 9.

1

INTEGER*2 D(151,201),C(151,201)
VER=1,

WhT=1.

NY=151

NT=201

NSUUR=3+3%VER

TANDD=.5%46 ,%(NY/150.) /HT
CALL MODELW(NY,NT,C)

CALL DOWN(NY,NT,D,NSOUR)
CALL NOACMP(NY,NT,D,C,  0.)
CALL GUTPUTC(NY,NT,D, VER, NKT)
CALL DOUWN(HNY,NT, 0y NSOUR)
CALL NOACMP (NY,NT,D,C, TANDD)
CALL OUTPUT(HY,NT,D,VER, #RT)
STOP

END

SUBRGUTINE NUACMP(NY,NT,D,C,TANDD)
INTEGER*2 D(NY,NT),C(NY,NT),ITFR}
DO 10 IT=2,NT

DO 10 KT=2,IT

1Z=IT-KT+2

SHIFT=(IT=1Z)*TAMNDD

LAT=SHIFT

LATP=LAT+1

IY1=LATP+1

IY2=NY-LATP

ITZ=1T-12+1

A=(1.=-SHIFT+LAT) /72043,

B=( SHIFT=-LAT) /2048,

bu 10 Iy=IY1,1Y2

[P=TY+LAT

IM=1Y=-LAT

ITERM=A*(C(IP ,IZ)*D(IP ,ITZ)+C(I# ,I1Z)*D(IM

28

yITZ))

+BX(COIP+1,IZ)*DCIP+1, ITZ)+CC LM~ , IZ)*D(Li=1,ITZ))

DCIY, IT)=DCIY, IT)~ITERMN
CONTINUE

RETURN

END

SUBROUTINE DUWN(NY,NT, D, NSOUR)
INTEGER*2 D(NY,NT)

DIMENSION PASCAL(11)
PASCAL(1)=1.

PASCAL (2)=PASCAL(1)

DU 10 X=3,HSOUR
PASCAL (K) =PASCAL (K=1)

KM=K~1

DO 10 I=2,KH

PASCAL (K=I+1)=PASCAL (K-=I+1)+PASCAL (X=1)
SCALE=1.5%1024,/PASCAL(NSQUR/2)
DO 30 IY=1,NY

D(IY,IT)=0

DO 30 IT=1,1S0OUR
DCIY,IT)=PASCAL(IT)*SCALE
RETURN

END

Test program, laterally interpolating multiplet program, and
downgoing wave initialization program (binomial coefficient wavelet).
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92. SUBRUUTINE MODELW(NY,NT,C)

93, INTEGER#*2 C(NY,NT)

94, DATA C1,C2,C3,C4,C5/1aqluylaylagla/
95, DATA D1,D2,D3/.09Y5,.33,.45/

96. DATA Y1,Y2,Y4/ 14,6410/

97. DO 05 IY=1,NY

98 . DU 05 IT=1,NT

99. 05 C(ly,IT)=0,

100. A=(D2%D2=-D1*D1)/(Y2=Y1) %%

101. IYI=1+(NY=,5) %Y1

1C02. IY2=1+(NY=-.5)%Y2

103. IY3=IYT+(NY=.5)*SQRT((D3*D3-D1*D1)/A)
104. D=DI*(NT=1)+1.5

104.1 IY1M=1Y1~1

105, DU 15 IY=1,IYIH

106. 15 CALL ADDELT(IY NY,NT,C,D,C1*1024)
107, DU 10 IY=IYI1,NY

108. D=SORTOIHDT+A*((IY=IY1)/(NY=1.,)) %%2) % (T-1)+1.5
109, CC=ClI

HO. IF(IY.GE.IY2) CC=C4

. IF(IY.CE.IY3) CC=CH

12, 10 CALL ADDELT(IY,NY,NT,C,D,CC*1024)
113. D=D2*(NT=-1)+1.%

113.1 IYep=1Y2+1

114, DO 20 IY=IY2F,NY

115, 20 CALL ADDELT(IY,NY,NT,C,D,C2 *1024)
116. D=D3%(NT=-1)+1.5

116,41 [Y3P=[Y3+1

117, DO 30 IY=IY3F,NY

118, 30 CALL ADDELT(IY,NY,NT,C,D,C3%1024)
19, RETURN

120, ERND

121. SUBROUTINE ADDELT(IY,HNY,NT,2,T0,SCALE)
122, INTEGER*2 Q(NY,NT)

123. Ch68=.568*5CALE

124, CO688=.0688+%SCALE

125, ITO=T0

126, IF(ITOWLT 2. 0RITOWGT W NT=2) RETURN
127, DELT=TO-ITO

128. DT=.5=-DELT

129, SL1=(SCALE-Cb68)/.5

130. SL2=C568/.5

131. SL3=C0688/.5

132. IF(DT) 20,20,40

133. 20 DELT=1.-DELT

134. QCIY,ITO-1)=0CIY,ITO~1)=-DELT#SL3
135. QCIY,ITO)=0CIY, ITO)+DELT*SL.2

136, QCIY,ITOo+2)=0(1Y,ITO+2)=-DELT*SL3
137. QUIY,ITO+1)=Q(IY,ITO+1)=DT*SL1+C563
138, GO TO 100

139. 40 QCIY,ITO-1)=0C1Y,ITO-1)~-DELT*SL3
140, QUIY, ITO)=0CIY, ITO)+DT*SL1+C568
141, QCIY,ITO+2)=0CIY, ITO+2)=DELT+SL3
142, QUIY, ITO+1)=0CIY, ITO+1)+DELT*51.2
143, 100 RETURHN

144, END

Figure 10. Subroutines for initializing the model of Figure 3 and 4.



