Appendix B
Manipulations of the Multichannel Equations

Considerable effort by the author has been done in attempting to
understand and simplify the multichannel equations. The following
matrix manipulations have not led to any practical results, but they
are put into this thesis as a starting point for future study.

We shall assume that the Nth order Toeplitz matrix in (III-11)
is positive definite. Thus, PN_l and P;_l are positive definite,
M by M , Hermitian matrices and can be diagonalized by orthonormal

transformations. That is,
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where L_l = L+ L'_l = L'+ and D and D' are diagonal
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matrices containing the necessarily positive eigenvalues of PN—l
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and P . Let us define

N-1 FN—l to be a diagonal matrix whose

elements are the positive square roots of the reciprocal eigenvalues
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of DN—l so that FN—l FN—l = DN—l . Likewise, define PN—l so
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that PN—l FN—l = DN—l . Using FN—l and PN—l , we note that
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Letting [R] be the Nth order Toeplitz matrix in (III-11),

we can formulate an equation similar to (III-11) as
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equation by letting

Premultiplying by PN—l LNil and using (B-2), we get the implied
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We turn (B-3) into a modified forward prediction error filter
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is found by postmultiplying

and comparing with (III-11) to get

(B-6)

The correspondingly modified backward prediction error filter

equation is
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Letting
.i. '
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premultiplying by PN—l L;—l and using (B-2), we discover that
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The equation relating G with C is found by postmultiplying

N N
l.
(B-7) by T -1 f and comparing with (III-11) to get
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Looking at (III-24) and using (B-6) and (B-9), we see that
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using (B-2) in the last step. The corresponding equation for
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GN = UN SN VN s (B-12)

where UN and VN are orthonormal matrices and SN is diagonal.

This form is always possible for any square matrix and is discussed in

(ref 10). The elements of SN are non—-negative, real numbers and are

called the singular values of GN

Using (B~12), we see that (B-10) becomes

~ 1 f 2 -1
Py = Dyen Tncn Y DT - S 1 Vg Ty Iy
(B-13)
B R -1 4
= [V Tylg byep ] DT Sg T DV Iy By ]

From the definition of positive definiteness, we see that PN

will be positive definite if, and only if, I - 82 is positive

N
definite or if all of the singular values of GN are less than unity.
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Another equivalent statement is that the eigenvalues of G& GN
(or GN G; ) Dbe less than unity. Finally, from (B-6) and (B-9), we
have
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Thus CN CN is a similarity transformation of G; GN and they must

have the same eigenvalues. Therefore, our positive definite condition

1
becomes that the eigenvalues of CN CN be less than unity.
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