Appendix B ## Manipulations of the Multichannel Equations Considerable effort by the author has been done in attempting to understand and simplify the multichannel equations. The following matrix manipulations have not led to any practical results, but they are put into this thesis as a starting point for future study. We shall assume that the Nth order Toeplitz matrix in (III-11) is positive definite. Thus, P_{N-1} and P_{N-1} are positive definite, M by M , Hermitian matrices and can be diagonalized by orthonormal transformations. That is, $$L_{N-1}^{\dagger} P_{N-1} L_{N-1} = D_{N-1}$$ and $L_{N-1}^{\dagger} P_{N-1} L_{N-1} = D_{N-1}^{\dagger}$, (B-1) where $L_{N-1}^{-1}=L_{N-1}^{\dagger}$, $L_{N-1}^{'-1}=L_{N-1}^{'\dagger}$ and D_{N-1} and $D_{N-1}^{'}$ are diagonal matrices containing the necessarily positive eigenvalues of P_{N-1} and $P_{N-1}^{'}$. Let us define Γ_{N-1} to be a diagonal matrix whose elements are the positive square roots of the reciprocal eigenvalues of D_{N-1} so that $\Gamma_{N-1}^{'}$ $\Gamma_{N-1}^{'}=D_{N-1}^{'-1}$. Likewise, define $\Gamma_{N-1}^{'}$ so that $\Gamma_{N-1}^{'}$ $\Gamma_{N-1}^{'}=D_{N-1}^{'-1}$. Using $\Gamma_{N-1}^{'}$ and $\Gamma_{N-1}^{'}$, we note that $$\Gamma_{N-1} \ L_{N-1}^{\dagger} \ P_{N-1} \ L_{N-1} \ \Gamma_{N-1} \ = \ \Gamma_{N-1} \ D_{N-1} \ \Gamma_{N-1} \ = \ I \ ,$$ and $$\Gamma_{N-1}^{'} \ L_{N-1}^{'\dagger} \ P_{N-1}^{'} \ L_{N-1}^{'} \ \Gamma_{N-1}^{'} \ = \ \Gamma_{N-1}^{'} \ D_{N-1}^{'} \ \Gamma_{N-1}^{'} \ = \ I \ . \tag{B-2}$$ Letting [R] be the Nth order Toeplitz matrix in (III-11), we can formulate an equation similar to (III-11) as We turn (B-3) into a modified forward prediction error filter equation by letting $$\Delta_{N} L_{N-1} \Gamma_{N-1} + P_{N-1} L_{N-1} \Gamma_{N-1} G_{N} = 0$$ (B-4) Premultiplying by $\Gamma_{N-1}^{'}\ L_{N-1}^{'+}$ and using (B-2), we get the implied definition of ${\rm G}_N^{}$ as $$G_{N} \equiv -\Gamma_{N-1}^{\prime} L_{N-1}^{\prime \dagger} \Delta_{N} L_{N-1} \Gamma_{N-1} . \qquad (B-5)$$ The equation relating ${\rm G}_N^{}$ with ${\rm C}_N^{}$ is found by postmultiplying (B-3) by Γ_{N-1}^{-1} ${\rm L}_{N-1}^{\dagger}$ and comparing with (III-11) to get $$C_{N} = L_{N-1}' \Gamma_{N-1}' G_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger} .$$ (B-6) The correspondingly modified backward prediction error filter equation is $$\begin{bmatrix} L_{N-1}\Gamma_{N-1} \\ F_{1}L_{N-1}\Gamma_{N-1} \\ F_{N-1}L_{N-1}\Gamma_{N-1} \\ 0 \end{bmatrix} = \begin{bmatrix} P_{N-1}L_{N-1}\Gamma_{N-1} \\ 0 \\ 0 \\ A_{N}L_{N-1}\Gamma_{N-1} \end{bmatrix} = \begin{bmatrix} A^{\dagger}_{N}L_{N-1}\Gamma_{N-1} \\ 0 \\ A_{N}L_{N-1}\Gamma_{N-1} \\ 0 \\ A_{N}L_{N-1}\Gamma_{N-1} \end{bmatrix}$$ Letting $$P_{N-1} L_{N-1} \Gamma_{N-1} G_{N}^{\dagger} + \Delta_{N}^{\dagger} L_{N-1}^{\dagger} \Gamma_{N-1}^{\dagger} = 0$$, premultiplying by $\Gamma_{N-1} \ L_{N-1}^{\dagger}$ and using (B-2), we discover that $$G_{N}^{'} \equiv -\Gamma_{N-1} L_{N-1}^{\dagger} \Delta_{N}^{\dagger} L_{N-1}^{'} \Gamma_{N-1}^{'} = G_{N}^{\dagger} .$$ (B-8) The equation relating G_N with $C_N^{'}$ is found by postmultiplying (B-7) by $\Gamma_{N-1}^{'-1}$ $L_{N-1}^{'\dagger}$ and comparing with (III-11) to get $$C_{N}' = L_{N-1} \Gamma_{N-1} G_{N}' \Gamma_{N-1}' L_{N-1}''$$ (B-9) Looking at (III-24) and using (B-6) and (B-9), we see that $$P_{N} = P_{N-1} [I - C_{N}^{'} C_{N}] =$$ $$P_{N-1} [I - L_{N-1} \Gamma_{N-1} G_{N}^{\dagger} \Gamma_{N-1}^{'-1} L_{N-1}^{\dagger} \Gamma_{N-1}^{\dagger} G_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}$$ $$= P_{N-1} [I - L_{N-1} \Gamma_{N-1} G_{N}^{\dagger} G_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}]$$ $$= P_{N-1} [I - L_{N-1} \Gamma_{N-1} [I - G_{N}^{\dagger} G_{N}] \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}]$$ $$= L_{N-1} \Gamma_{N-1}^{-1} [I - G_{N}^{\dagger} G_{N}] \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}$$ $$= L_{N-1} \Gamma_{N-1}^{-1} [I - G_{N}^{\dagger} G_{N}] \Gamma_{N-1}^{-1} L_{N-1}^{\dagger},$$ using (B-2) in the last step. The corresponding equation for $P_N^{'}$ is $$P_{N}' = L_{N-1}' \Gamma_{N-1}'^{-1} [I - G_{N} G_{N}^{\dagger}] \Gamma_{N-1}'^{-1} L_{N-1}'^{\dagger}$$ (B-11) Let us express G_N as $$G_{N} = U_{N}^{\dagger} S_{N} V_{N} , \qquad (B-12)$$ where $\mathbf{U}_{\mathbf{N}}$ and $\mathbf{V}_{\mathbf{N}}$ are orthonormal matrices and $\mathbf{S}_{\mathbf{N}}$ is diagonal. This form is always possible for any square matrix and is discussed in (ref 10). The elements of $\mathbf{S}_{\mathbf{N}}$ are non-negative, real numbers and are called the singular values of $\mathbf{G}_{\mathbf{N}}$. Using (B-12), we see that (B-10) becomes $$P_{N} = L_{N-1} \Gamma_{N-1}^{-1} V_{N}^{\dagger} [I - S_{N}^{2}] V_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}$$ $$= [V_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}]^{\dagger} [I - S_{N}^{2}] [V_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}] .$$ (B-13) From the definition of positive definiteness, we see that P_N will be positive definite if, and only if, $I-S_N^2$ is positive definite or if all of the singular values of G_N are less than unity. Another equivalent statement is that the eigenvalues of G_N^\dagger G_N (or G_N G_N^\dagger) be less than unity. Finally, from (B-6) and (B-9), we have $$C_{N}^{'} C_{N}^{'} = L_{N-1} \Gamma_{N-1} G_{N}^{\dagger} \Gamma_{N-1}^{'-1} L_{N-1}^{'\dagger} L_{N-1}^{'} \Gamma_{N-1}^{'} G_{N}^{\dagger} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}$$ $$= L_{N-1} \Gamma_{N-1} G_{N}^{\dagger} G_{N} \Gamma_{N-1}^{-1} L_{N-1}^{\dagger}$$ $$= [L_{N-1} \Gamma_{N-1}] G_{N}^{\dagger} G_{N} [L_{N-1} \Gamma_{N-1}]^{-1} .$$ Thus C_N C_N is a similarity transformation of $G_N^\dagger G_N$ and they must have the same eigenvalues. Therefore, our positive definite condition becomes that the eigenvalues of $C_N^\dagger C_N$ be less than unity.