Appendix A

Determination of Pure Line Spectra

From expression (1I-44) in II-B.7, we see that an Nth order

maximum entropy spectrum, PN(f) » can be written as
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where A(z) 1is the N-1th order prediction error filter and D(z)
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(A-1)

is the N-1lth order prediction error filter corresponding to the negative

sequence of reflection coefficients. Let us factor the Nth order

prediction error filter, i.e.,

Az) + Al - 1-82) , (A-2)
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where B;l (n=1 to N) are the N roots of the polynomial.

By doing a partial fraction expansion, we can write
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The constant term on the right-hand side occurs because the
numerator and denominator polynomials on the left-hand side are both of
order N and their highest order coefficients are ~Cx and e

respectively. By letting 2z go to infinity, we confirm that the value

of the constant term is - R(0) At /2 . Furthermore, since the numerator

and denominator polynomials on the left-hand side both start with unity,
we discover by setting 2z to zero that
N
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Using this, we can write
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The value of Bn may be found by multiplying by l-—an and
setting z = 8_1
n

From (A-1), we can write
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This expression gives the maximum entropy spectrum as a sum of poles
instead of a product of poles. We shall now look at the properties of the
individual summation terms.

We should first note that for |z|=l » the expression
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is real. Also, the total area under this curve is equal to the real

part of B .

To prove this, let us consider the function
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whose real part is the phase of (1-—82)2 z—l divided by 4w . With

= e_i21TfAt and dz = -i2wAt zdf , the derivative with respect to f
is
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Using this equation and its complex conjugate, we thus have

that £
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To evaluate (A-7) when f=y , we note that each of the logarithmic

functions has a net phase shift of 27 , remembering that (1-8z)
* -

has no net phase shift but (1-8 z l) does. Thus, the total integral

1. %
is E{B +B) = Real Part of B .

We can also note that by putting (A-7) into the integral of (A-4)
with respect to f from -~y to f , we have an analytic form for the

integrated power spectrum of a maximum entropy spectrum.

In looking at the functional form of (A-5), we see that if B
is real and positive, then (A-5) is a first order maximum entropy

spectrum with B = R(0) and ¢y = - B . However, in general B will

not be real and thus the simple interpretation of (A~4) as the sum of
N first order maximum entropy spectra is not valid. For a more detailed
look at (A-5), let R be real. This simply rotates the function so

that the two poles are on the real axis. Then
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where BR andWBI éféﬂfﬁéggggiﬁEﬁa”iméginary parts of B l
As we have just noted, if BI=O , then we would have a first order

maximum entropy spectrum. However, the imaginary part of B skews

the function and, indeed, if ]28 BI] >(BR(l—f$)I , then (A-8) will

actually be negative for some values of f . Because of this, (A-4)

is not a particularly useful form for studying maximum entropy spectra

in general. However we shall use (A-4) in the following study of the

special situation in which [ch goes to unity so that the spectrum

turns into a set of N spectral lines.

As shown in II-B.8, when [=l » the zeros of the prediction

ey
error filter all lie on the unit circle and are distinct. Consequently,
the spectrum consists of a set of N delta functions. However, in this
limiting case, the mean square error is zero and the strength of the
delta functions cannot be determined from the prediction error filter.
We shall develop here an expression for the strength of the delta
functions in terms of the N-1th prediction error filter. This will
lead to a new positive real functional form involving a prediction error
filter and to a better understanding of spectra consisting of pure
spectral lines.

Multiplying (A-4) through by (l—an) , setting z = B and

using (II-45), we see that
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or by using 1'Hospital's rule,
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where the prime indicates the derivative with respect to z . This
derivative is given by
-
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where A” ( ) means the derivative of the function A*( ) . Since

-1 . N %, -1 .
zZ = Bn is a root of A(z) + cy Z A"(z 7) and we wish to evaluate

-1 . N * -1 l
(A-10) at =z = Bn » we can use the equation cn? A (z = —A(z)’z=8~l
n

to eliminate the explicit dependence of (A-10) on Cy * Thus, when
z = B;l » (A-10) becomes
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Putting (A-11) into (A-9), would give usa general expression for Bn .
At this point, we shall let ]ch go to unity. PN(f) then

becomes a set of N delta functions located at frequencies, fn ,» Where

- %
Bnl are the N wunit magnitude roots of A(z) + ¢ zN A (z

N
e_IZHAtfn = B;l . The strength of the nth delta function is given by

_l) and

the real part of Bn .

When ]cN|=l ,» the first factor in (A-9) is an indeterminant

form at z=R 0 since this value of =z will also be a root of

*, -1

A(z )+ec z_N A(z) . To resolve this indeterminancy, let us replace

2. %

N by «o ey o where o 1is positive and slightly less than unity. Then,

for z=8n , we can write the first factor of (A-9) as
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Letting o go to unity, we then get [
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Combining (A-9), (A-11) and (A-12), we get
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Since IBn[=l , we have Bn = %1. Thus, for z=8n ,
A*'(z_l) = A*'(z*) = [A'(z)]* . Using this, and factoring out
A(z) A*(z—l) , we obtain from (A-13)
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Equation (A-14) is most interesting. We can first note that the
first factor is two times the N-lth order maximum entropy spectrum.
The second factor is clearly real and thus Bn is real. Bn

is the strength of the delta function at fn and since the corresponding

autocorrelation matrix is non-negative definite, Bn must be positive.
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Looking at (A-14) again, we note that Cy does not explicitly
appear in the expression but that the value of Bn is determined by the
location of the delta function on the unit circle. Since we have seen
in II-B.8 that a delta function can be located anywhere on the unit
circle by properly adjusting the phase of cy > e shall drop the subscript
n and consider (A-14) as a z-transform expression. In particular, we

shall study the properties of the denominator of the second factor where

it is written in the analytic form of

\i *l _l
N -2z ﬁ—(g‘;‘)—“ - Z_l A—*Qz‘il . (A-15)
A(z )
Since B is positive for all [zl =1 , (A-15) is an autocorrelation

function. From this, it is clear that

(A-16)

is a positive real function.

From II-B.7, we saw that the delta functions were located at the

% -
roots of A(z) + ¢ zN A (z l) = 0 . An equivalent statement is that

N
the phase of

* -
-y zN A (z 1)
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is zero (or an integral multiple of 27 ), or that
*  —
1 - cy zN A (z l)
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i A(z)

Let z = e so that dz = i z dw. Then
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-c zN A*(z_l)
d¢ = iz do = z Ji—zn N =
dw dz dz A(z)
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Thus, (A~15) is the rate of change of phase of (A-~17) with respect to
w . From inspection, as w goes around once,the phase of (A-17) makes
N circuits. Thus the integral of (A~15) with respect to w from
-mT to w is N 2w .

Suppose we graph (A-15) with respect to w for N=8 and assume
that the phase of ¢ is such that one of the delta functions is at

N

UJl.

d¢
dw /\/

wr ws i, We o Wa by Wy W

Then the other delta functions are located at points such that the area
under the curve between the points is 27 . The strength of the delta
function at W is then found as two times the value of the N-ith

maximum entropy spectrum at w divided by the value of d¢/dw at W

We note that as the phase of °N increases by 2w , the locations of

the delta functions move to the left until w becomes wn-l .
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We know that d¢/dw is positive since (A-17) is the z-transform
of a physically realizable all-pass filter (see Claerbout, 1976)%.
Actually, this is still true for the same reason if zN is replaced by
zN_l in (A-17) or if N is replaced by N-1 in (A-15). Thus, a sharper

form of (A-16) is that

e g

is positive real where A(z) is an Nth order prediction error filter
instead of being N-1lth order. A geometrical proof of this, using
iw

zZ = e , follows.

The phase, ¢ , of A(z) can be written as
1
¢ = Real Part of ;’Qn A(z) ,

and its derivative with respect to w is

do = Real Part of %— Q&EJQLQl =
dw i dw
?
Real Part of =z din A(z) = Real Part of =z A (z)
dz A(z)

Thus, for (A-20) to be positive real, the rate of change of phase
of A(z) with respect to « must be less than N/2.

Suppose we look at the phase properties of a first order minimum
phase filter, 1 + az , where [u|< 1 and we take o real and positive
for convenience. As 1z goes around the unit circle, 1 + oz has the

following locus.

* Claerbout, Jon F., Fundamentals of Geophysical Data Processing,
McGraw-Hill, 1976.
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From plane geometry, we see that A¢ < Aw/2 . We might note that

when w~m, |A¢]| > |[Aw|/2 but that at this time, d¢/dw is negative.
Since there are N such factors in the Nth order filter, we

see that

A'(z)
5 Real Part of =z A(z) > 0

and thus (A-20) is positive real.

Actually, if we look at equation (A-6) again, we see that we have
already proved the above theorem, since the righthand side is a positive

real function, which says that the derivative of the phase of

(l—Bz)2 z_l with respect to f 1is positive.



