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1IV. THE GENERAL VARTATIONAL APPROACH

The general problem that will be considered here is the estiﬁagion
of a function P(x) from an accurate but incomplete set of facts
concerning various properties of P(x). The estimation procedure
involves choosing an extremal principle and then finding the P(x)
that satisfies the principle under the constraint that P(x)

agrees fully with all knowledge about P(x) .

A. The General Equations

Let the variational principle be the desire to achieve an extremal

for the integral
S VI[Px), x ] dx . (IV-1)

The information that is directly known about P(x) is contained in

the N equations
SGn[ P(x), x ] dx= Yy _, n=1 to N. (1V-2)

In both cases, x may be multidimensional and the integrals are over the
same specified space.

To solve this problem we shall use Lagrange multipliers, Xn
Thus, with A = S dx , we need

N
sj {V[ P(x), x ] - nzl A6, L PG, x 1= A /A ]} dx = 0 , or

N
SSV'[P(X), x]1- % % @ [P(x),x]}ap(x) dx = 0
n=l n n



Thus an extremal is attained when
N
Vi [PE),x]= ¥ XA G'[P(x), x]. (IV-3)
n n
n=1
The prime on V and Gn indicate the derivatives with respect
to P(x) holding the explicit dependence of V and Gn on X

constant. The Lagrange multipliers, Kn , are to be chosen so that

equations (IV-2) are satisfied.

B. A Solution Procedure

The solving of (IV-2) and (IV-3) will in general require an
iterative solution technique. An iterative technique which will

always solve the problem in many important cases is given below.

Step 1: Starting with some set of values for Xn s
n=l to N , solve (IV-3) for P(x) . This step
in itself may be a difficult iteration problem since
(IV-3) is an implicit function of P(x) . Also, the
chosen values for An may not allow a reasonable
solution for P(x) . One method of alleviating these
problems is to start by imposing only one of the
constraints on P(x) and going through the procedure
steps until a solution is obtained. Then, starting
with that solution, add another constraint to the

problem and go through the procedure steps again, etc.

Step 2: Using the derived P(x) , calculate the values of

the N integrals (IV-2) , i.e.,



Step 3:

g = 5’ ¢ [ PG, x ] dx . (TV-4)

If g, = Yn for n=1 to N , then we have an
exact solution. Normally, however, the g, will not

be equal to the y and we will need to change the
n

Xn so that the g, become closer to the Y,

To do this, we can write the differential of g,

with respect to the kn as

or in matrix form

dgy 1), H, Hin iy
dg, %= |Hy Hy, Hyp a, O, av-s)
ey ) [Ma | dhy

where Hns - Bgn_/aks - Letting -

one can estimate the change Akn in An necessary

to make 8y = Yn by solving the matrix equation

M = H e (1V-6)

where AA and € are column vectors and H is the
square matrix in (IV-5).

Replace Xn by An + azﬁkn » where 0 <ag 1, and
go to steps 1 and 2 again, etc., until the length of

the error vector ¢ is small enough. Here, the vectcr
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AN gives us a direction to move in to reduce the length
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of the error vector ¢ . However, if o is too large,

we may overshoot and the length of ¢ may increase. During
the early steps in the iteration, small values for may
be necessary for convergence. During the later iterations,

@ can usually be set to unity.

To solve for dg_/ 39X , one takes the partial derivatives of
n s

(IV-3) and (IV-4) with respect to AS to get

1" 1 N "
VIR, x 1 g = ol [ PG, x]+ I A G [ PGo,x ] 2B
s n=1 s
or '
G [ P(x), x ]
oP (x) _ s
A = . N N (Iv-7)
s VIPG,x1- I )G [P&,x]
n=1
and
o (g [ PG, x ] 2 4y (1-8)
B n x)> X 2 :
Putting (IV-7) into (IV-8) we have
3 G [ P&, x 16 [ P&, x ]
n o _ n s _
B - N - dx . (IV-9)
S VIPx),x]1-2 A G [P, x ]
Il=l n n
If we let

N
QIPx)] = V[ Px)yx] = ZA_[G [PX),x]~- A /A ], (IV-10)
n=1 n n
we see from (IV-3) that our desired solution occurs when Q'[P(x)]=0 .

From (IV-9), we see that Q"[P(x)] is the denominator in the integral.

Now if, for all values of =x that are being integrated over,
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Q"[P(x)] >0 and no non~zero linear combination of the Gn functions
is a constant, then we can make the powerful assertion that the matrix
H 1is positive definite. This is easily proved by remembering that
Ho o= Bgn-/aks and that H is positive definite if and only if

é? Ha> 0 when a # 0 , where the superscript T indicates the

transpose. Using (IV-9), we see that

N 13 N 1

T a G[P&x,x] Z a G_[Px), x]
al Ha = o=l © 7 NS=1i > dx

VI[P, x]- I Kn Gn [ P(x), x ]

n=1

or

N ' 2

§Z anGn[P(X),X]}

al Ha = n=t dx >0 ,
B Q [ P(x) ]

if Q"[P(x)]>0 and a# 0 since the integrand will be non-negative
but positive for some x . Likewise, if Q"[P(x)] <0 for all x ,
then H will be negative definite.

If H 1is a definite matrix for all of our iterations, then
we will always be able to solve (IV-6) under rather general conditions.
Furthermore, if H is a definite matrix throughout the iteration
procedure, then if there is a solution to the problem, the specified
iteration procedure will converge to that solution and that solution
will be unique. To prove this, we shall reformulate the problem to
make it clear that if H is positive definite, then we are actually

maximizing a particular concave function.
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C. Global Convergence to a Unique Solution

Let us consider maximizing the function F(A) = F(Al,Az,...,XN)

over a convex region, ¢ , of N dimensional Euclidean ) space, where

N

F(A) = J{V[P(x),x] - I An[Gn[P(x),x] - yn/A] }odx , (IV-11)
n=1

A =‘fdx and P(x) is defined as an implicit function of the \'s by
N

VI Px),x ] = % An G; [P(x),x] . (Iv-12)
n=1

Taking the partial derivative of (IV-11) with respect to XS ,

we have
(Iv-13)
N
- =f{[v'[1><x>,x1 T I GplP@),x]] ‘BPT(}‘;‘:‘ " LG IPG,x] - v /AT) dx
s =

If a maximum exists inside our convex region,  , the partial
derivatives must vanish. Thus, from (IV-12), we see that a require-

ment for a maximum is
JfGS [ PE),x ] dx = Yo (s=1 to N ) . (IV-14)

We note that under this formulation of the problem, our constraint

equations (IV-2) will be automatically satisfied at a maximum of

F(A) . Taking the partial of (IV-13) with respect to Kr , we have
2 N
_9 F _ " _ " IP(x) 9P (x)
oo s f{[ VI[P (x),x] - & AL [P (x),x] ] %\ 3
s 'r n=1 r s
- PE) _ o AP (x) -
Gr[P(X)’X] aAS GS[P(x),x] aAr }dx . (IV-15)

Taking the partial of (IV-12) with respect to As » we get

(Iv-7), which allows us to write (1IV-15) as
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2 Gé [P(x),x] Gl',[P(X),XI

m = - N dx . (IV—16)

V'"[P(x),x]- & AnG”[P(x),x]
n=1 n

If no non-zero linear combination of the G;[P(x),x] is zero
N
and if V"[P(x),x]- I AnG;[P(x),x]:>0 over Q , then the N by N
n=1

2
matrix formed from 5%—%X— will be negative definite (the H matrix
s r

will be positive definite) and the function F(A) will be a strictly
concave function in @ . In this situation, if a maximum exists inside
 , it is unique and will be found by following the procedure discussed
in the last section (see Luenberger, David G. ref 9 ). Finally, we
note that when F is a maximum with respect to the A's , then

all of the conditions for F being a minimum with respect to P(x)

are met. As can be seen, this procedure is the multidimensional case
of Newton's method. Luenbergergdiscusses many other descent algorithms
which may be more practical for solving the variational equation for
specific problems.

D. Variational Principles

In maximum entropy spectral analysis, the variational principle

is to find a maximum for
f 2n [ P(f) ] df . (IV-17)

As for most density functions, the usual constraint equations are linear

functionals in P(f) . That is, we know the values of integrals of

the form

j G (£) P(£) df = y_, n=1to N . (IV-18)



104

In this case, equation (IV-3) is
' N
n [P(£)] = 1/ P(f) = ¥ A_G (f) . (IV-19)
p=] B D

This is of course easily solved explicitly for P(f) as

P(f) = T—l_—— (Iv-20)

I oA G (f)
n=1

Equa&ion (Iv-10) for Q"[P(f)] becomes V—i /;z(f) and thus
Q"$ 0 for all f and H is thus negative definite.
In looking at the variational principle (IV-17), we see that
P(f) should be positive for all f since the logarithm of a negative
number is complex. However, a better argument is perhaps given by
(IV-19) in which we see that if P(f) is close to zero, then Rn‘[ P(f)]
is large and positive and a small increase in P(f) will make an appreciable
increase in the value of the integral. Thus P(f) is driven away
from zero by the variational principle. Thus, the variational principle
itself is used to impose the constraint of positiveness on the solution.
For the same set of constraint equations, (Iv-18), there are an

infinite number of variational principles which would make P(f)

positive for all frequencies. One example is

gP(f) La[P(£)] df .

Then
N
Q'[P(£)] = An[P(f)] +1 - % An Gn(f) = 0 , which gives
n=1

N
P(f) = exp 5 z Kn Gn(f) - l} and Q (f) = 1/P(f)

n=]1



Here we would wish to minimize the integral and we see that when P(f)
is small, the n[P(f)] 1is a large negative number, and a small
increase in P(f) produces a sizable decrease in the integral. We

also note that H dis positive definite.

Another example is

S Pa(f) df , where a<1 but a# 0.

Then
a-1 N
Q'[ P(f) ] = aP ) - 2 X 6 () =0
el DD
or -
1
P(f) = T
1 N 1-a
L 3 2 cqp
a n n
n=1
and Q" = a(a-1l) pa” (f) . Again we have a definite H matrix

and the variational principle repells P(f) away from zero.
A common variational principle is to minimize the average

square value of a function, i.e., to minimize

j p2(£) df

In this case,

N
2 P(f) - I An Gn(f) = 0 and
n=1

Q' (£)

Il
N

Qn (f)

Thus, H 1is positive definite and the functional form of our

solution is simply

1
P(f) = 5 h2 An Gn(f)
n=1

However, this variational principle does not require P(f)> 0 and

thus it should not be (but is) used for spectral analysis.
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A final example is a variational principle that involves f

explicitly.

1 1
S [P(f) “LE TOU® - @ ] s

where U(f) 2 L(f) for all f . Here if we start with P(f)

between L(f) and U(f) and try to minimize the integral under
constraints, P(f) will be repelled by both the lower and upper
boundaries. This example shows how complex constraints can be
introduced into a problem by the appropriate variational principle.

E. Consistency and Usefulness of Measurements

Aside from problems which arise from statistical uncertainties,
there are two fundamental questions that can be raised about a set
of measurements. One question is concerned with the results of the
measurements and the other with the measurements themselves. It
should be remarked here that the following observations are somewhat

philosophical and argumentative.

To illustrate the first question, suppose we measure the zero
and first lags of the autocorrelation function of some spectrum
and find that ®(0) =1 and &(1) = 2 . Since we know that ®(0) 2 o(1),
these measurement results must be inconsistent. That is, it is clearly
impossible to find a power spectrum which will be in agreement with
these measurements. In another case, suppose ®(0) =1 , ®(1) = 0.5 ,

®(2) = -0.1 and &(3) = 0.3 . Are these measurements consistent?
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This is a less trivial but still straightforward question to answer
since one only needs to check the corresponding 4 by 4 Toeplitz
matrix for semi-positive definiteness. However, if we also threw
in the information that the power out of a filter with a complex

frequency response of Y(f) was 3, i.e.,
S Y(f) Y¥(f) P(f) df = 3,

then the question of consistency for the complete set of measurements
becomes quite difficult.

The solution to this question of measurement consistency can
be found by use of a variational principle approach. The reason is
that if the data are consistent, then there is at least one spectrum
which agrees with the measurements. If that spectrum is unique, then
it is the extremal spectrum for all variational principles. If
there is a set of spectra agreeing with the data, then, loosely
speaking, if the value of a variational principle is bounded over this
set, a particular member of this set will be selected by the variation
principle. If suitable mathematical conditions (compactness, convexity)
are imposed, then we could conclude that

1) If an extremal solution cannot be found that maximizes a
particular variational principle, but the constraints bound the maximum
value of the integral, then the data must be inconsistent. This
result is independent of the particular variational principle if it
is bounded.

2) 1If one variational principle has a solution, then any bounded

variational principle has a solution.
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The second question is about the measurements themselves, i.e.,
the properties or characteristics for which numerical values can be
found. This question is inter-related to the boundedness of the
variational principle. To give an example, suppose that we know
the values of @(1) through &(10) but do not know the value of &(0)
What is the maximum entropy solution for this set of measurements?

The answer is that there is no maximum entropy extremal since the set
of measurements cannot bound the entropy integral. One can always

add more white noise to the spectrum, i.e., make &(0) larger and
larger, without changing &(1) through ®(10) . In this case, one may
object to the problem on the grounds that knowing ®(1) through

®(10) really doesn't tell us much about the spectrum. In fact,

any set of numbers for &(1) through &(10) are consistent if

we make &(0) 1large enough.

This example produces two observations:

1) Some sets of measurements may be missing a key characteristic
without which the measurements are incomplete.
2) A variational principle must be bounded by the measurement

set before it can be useful.



