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ITI-C. EXTENDING THE MULTICHANNEL AUTOCORRELATION FUNCTION

In studying the general extension of the single channel
autocorrelation function, we saw that if the autocorrelation matrix
became singular, i.e., if the mean square error went to zero, then
the rest of the autocorrelation function was resolved. 1In the
multichannel case, the situation is more complex when the determinant
of the mean square error matrix vanishes. When this happens, at
least one of the time series can be generated by a multichannel
recursive filter operating on the past of the time series in
question and the present and past of the other time series. Such
channels can be temporarily eliminated from consideration and the
extension of the autocorrelation function of the remaining channels
can be continued separately. The extension of the complete
autocorrelation function can be recreated by using the deterministic
relationship that the eliminated channels have with the other channels.

All of the various theorems discussed in the single channel
case have their counterparts in the multichannel situation. Since
almost all of these theorems are based on the Fundamental Auto-
correlation Matrix Theorem, we shall restrict our attention to
its proof. 1If the need arises, the reader can develop the
various multichannel theorems, together with the complexities caused

by the vanishing of the determinant of the mean square error matrix.

1. The Fundamental Multichannel Autocorrelation Matrix Theorem

Given a set of M by M complex matrices, R(n) , ,n[f N,
where R(n) = RT(—n) » then these matrices are the beginning of an
M channel multichannel autocorrelation function if and only if the

block Toeplitz matrix
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R(0) R(-1) R(-N)
R(1) R(0) R(1-N)
R(N) R(N-1) R(0)

is non—;;;;E;;;‘gg;iﬁite.
By looking at the single channel case, it is clear that such

a matrix must be non-negative definite. Thus, we shall be concerned

with proving the sufficiency part of the theorem. Because the

strictly non-negative definite situation is a limiting case of the

positive definite case, it is only necessary to prove the theorem

when the block Toeplitz matrix is positive definite. We shall do

this by constructing a multichannel spectrum whose autocorrelation

values agree with the given R(n) , |n]§ N . In particular, the

constructed spectrum will be the maximum entropy spectrum. The

proof involves first showing that the multichannel prediction

error filter is minimum phase and then algebraically demonstrating

that the corresponding maximum entropy spectrum agrees with the given

autocorrelation values.
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2. The Multichannel Minimum Phase Theorem

One definition of a minimum phase filter is that it is a physically

realizable filter whose inverse is also physically realizable (and

stable) . In the single channel case, for an Nth order, physically
realizable filter, 1 + a;z + ... + aNzN , to be minimum phase, it
is necessary that [1 + a;z + ... + aNzN]_1 have a Taylor series

expansion which converges on the unit circle. This will be true if

N.-1
z

and only if [1 + a;z + ... a ] has no poles on or inside the

N

unit circle, which means that all N roots of 1 + a;z + ... + aNzN

must lie outside the unit circle.

A minimum phase multichannel filter is similarly defined. That
is, it is a physically realizable filter whose inverse is physically
realizable. This means that for an Nth order, physically realizable
filter of the form, F(z) =1 + Flz + ...+ FNZN , to be minimum
phase, it is necessary that Frl(z) have a convergent matrix Taylor

-1

series expansion on the unit circle. As an example of what F ~(z)

looks like, let us consider a two channel case and write

F1(2) Fy(2)

F(z)
Fél(z) F22(z)

Then
FZZ(Z) —Flz(z)

-1 _ 1

det[F(z)] _F21(z) Fil(z)

From this, it is clear in general that for Frl(z) to be physically

realizable, it is necessary and sufficient for the determinant of
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F(z) to have all of its zeros outside the unit circle.
We shall now prove that if the Nth order multichannel Toeplitz
matrix is positive definite, then the corresponding Nth order

prediction error filter is minimum phase. That is, if

— - o~
R(0) R(-1) R(-N) I PN
R(1) R(0) R(1-N) Fl 0

= , (II1I-25)
R(N) R(N-1) R(0) FN 0

where the Toeplitz matrix is positive definite, then the determinant

of I+ Flz + ... + FNzN has all of its roots outside the unit circle.

The proof begins by augmenting (III-25) to get

‘k(O) R(-1) R(-N) R(—N—l; I I ] f PN
R(1) R(0) R(1-N) R(~-N) Fl 0
= . (I11-26)
R(N) R(N-1) R(0) R(-1) FN 0
R(N+1) R(N) R(1) R(0) 0 0

For this equation to be valid, it is only necessary that
N

R(N+1) = - T R(N+1-n) Fn .
n=1

In addition, this N+1 th order Toeplitz matrix, RN+1 , will also

be positive definite. This can be verified by letting
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i~ 7
I 0 0 0
Fl I 0 0
Q = )
FN 0 I 0
0 0 0 I
and noting that
PN 0 0 0
0 R(0) R(1-N) R(-N)
T -
URypp @ =
0 R(N-1) R(0) R(-1)
0 R(N) R(1) R(0O)
Since PN is positive definite, so will be RN+l . It is also clear

from these equations that
det [ Ry 1 = 1 |2 [,

a fact which we shall use a little later on.

Using the above procedure, we can continue to augment the Toeplitz
matrix indefinitely and the enlarged matrix will always be positive
definite. Our extension of the R matrices follows the feedback

equation

z R(s~n) Fn = 0 , (s>0), (I11-27)
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This equation can be extended to all values of s . 1In particular,

for s=0 , we have

R(-n) F_ = P , (III-28)

and for s<0 , one can calculate the M by M matrices, A(s),

by
N
T R{s-n) Fn = A(s) , (s <0 . (111-29)
n=0
These equations can be written in 2z transform form as
-0 —C0
[ R@ 21 Flz) = P+ & A®@ 2"
n=--c =-1
or
o0 —oo
n n -1
% R(n) z = [ PN + I A(n) z© ] F “(z) - (III-30)
= —00 n:—l

This equation can be interpreted as a multichannel filtering operation
where the multichannel input PN + Z A(n) z" is filtered by the
inverse of the multichannel prediction error filter to get the auto-
correlation function I R(n) z% . The input becomes zero after t=0 ,
but the output continues on indefinitely. To understand this, we see
that a typical z-transform term of F_l(z) is of the form

polynomial in =z
det F(z) >

and that the extension of R will consist of linear combinations of
such terms. If the det F(z) has a zero inside the unit circle,

then that zero will create an exponentially growing term in the

R extension unless the coefficient weighting that term is zero. To
show that the coefficient could not be zero, let us assume that w is

a root of det F(z) and that e = {e } is an eigenvector
M

1 €2
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{ e ey -en ey } Fw) = eF(w) ={00 0}
Then

[ e ew ew2 ewN ] I {00 ... 0}
F
L - : (TII-31)
FN

2 N . .
Thus [ e ew ew ... ew | dis one of the vectors that is

perpendicular to the M column vectors of the F matrix. Since
these column vectors are independent (the identity matrix assures
this) and MN + M tall, there will be exactly MN 1linearly independent
vectors perpendicular to the M columns. Looking at (III-25), we
see that the bottom MN rows are all perpendicular to the F matrix.
Furthermore, because of the positive definite assumption, these rows
are linearly independent, and thus cannot all be perpendicular to
[ e ew ew2 . ewN ] . Thus if the det F(z) has a zero inside
the unit circle, the extension of the R matrices will contain an
exponentially growing term. However, because all enlarged R matrices
are positive definite, we cannot have arbitrarily large off diagonal
terms. Thus we conclude that all zeros of det F(z) must lie on
or outside the unit circle. We shall now showthat det F(z) cannot have
a zero on the unit circle.

Suppose w is a zero of unit magnitude. Then, using (III-31),

we see that



[R(0)  R(-1) R(-N)
R(1) R(0) R(1-N)
R(N) R(N-1) R(0)

for any value of the real constant,

—Q

TF T .
[e ew ewN] I P
N
-1
w Fl 0
-1
FN 0
- R .
o . We note that the dyadic

matrix is a block Toeplitz matrix, and thus combining it with the R

matrix still gives us a block Toeplitz matrix. If a 1is allowed to

increase from zero, the determinant of the Toeplitz matrix can be

made as small as one wishes.

However, we have already shown that if

the Fn and P matrices are the solution for a positive definite

N

block Toeplitz matrix, then the determinant of that matrix is given by

N

n=0

than or equal to ]PN|N+1

Since

i anl . But since IPn+l' < ’Pnl » the determinant must be greater

[PNI > 0 , we see that det F(z)

cannot have a zero on the unit circle.
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3. The Multichannel Maximum Entropy Extension

Suppose we have R{n) , Inl S N, of a positive definite
multichannel autocorrelation function and we solve (I1I-25) for the
Nth order forward prediction error filter. If we now choose the
zero extension of the reflection coefficient sequence, starting
with cN+l » then the corresponding extension of the autocorrelation

function will be given by the convolutional matrix feedback operation

of
N
R(s) = - R(s=n) F , s> 0N, or
n
n=1
N
z R(s-n) F = 0 , s>N, F.=1. (I11-32)
n 0
n=0
Let us define the function H(z) as
H(z) = R(0)/2 + R(L)z + R(DzZ + oo . (TI1-33)

It is clear that H(z) + HT(z_l) is the 2z transform of the
multichannel autocorrelation function. If we convolve H(z)

with the Nth order prediction error filter, F(z) , the result must
be of the form,

B N (I11I-34)
12 + ... FN z ]

O ¥ ,

H(z) F(z) = R—Z(—Q [1I+7F

since (IITI-32) tells us that %s =0 for s> N . We see from

(III-34) that

H(z) = %Ql%(z) Fl(z) (ITI-35)

and that H(z) 1is a legitimate matrix Taylor series since F(z)
is minimum phase.
We now derive the relationship between F(z) and F(z)

by induction. At the same time, we shall develop the relationship
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between the backward prediction error quantities B(z) and

_B(z) .
Suppose that
(I1I-36)
R(0)/2 0O 0 T R(0)/2 0 0 I
R(1) R(0)/2 0 FoL 0 R(0)/2 0 T,
R(N) R(N-1) R(0)/2 Fy 0 0 R(0)/2 '%N
S — o _J L e - ot
and (II1-37)
o _ = - - - =
R(0)/2 R(-1) R(-N) BN R(0)/2 0 0 BN
0 R(0)/2 R(I-M) | [Bo 4| O R(0)/2 0 By_g
0 0 R(O)/2 | |I 0 0 R(0)/2 I
b TR R B J b |
are true. Then since
R(0) R(-1) R(-N) I Py
R(1) R(0) R(1-N) Fofo |0 and
R(N) R(N-1) R(0) Fy 0
. I S L
- —_ - = = -
R{(0) R(-1) R(-N) BN 0
R(1) R(0) R(1~N) Buo1| = 0 . we have
iEfN) R(N-1) R(0) i lf‘ | LfN_
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- —_— - ~ -(III-38)
R(0)/2 R(~1) R(-N) I PN R(0)/2 0 0 I
0 R(0)/2 R(1-N) | |Fy{_[0 |_ 0 R(0)/2 0 T
0 0 R(0)/2| |Fl |0 0 0 R(0)/2 '%N
b SR S I TR SR S i
and (I11-39)
R(0)/2 O 0 By 0 R(0)/2 0 0
R(1) R(0)/2 0 By |= 10 |- 0 R(0)/2 0
/ ' (0)/2
R(N) R(N-1) R(0)/2 I P 0 0 R I
| ] AR T U T B
Going to the N+l case and using (III-36) and (III-39), we
can write for the forward prediction error filter that _
R(0)/2 0 0 0 I 0
R(1) R(0)/2 0 0 F . By . _
N+1
R(N) R(N-1) R(0)/2 0 FN Bl
R(N+1) R(N) R(1) R(0)/2 0 I !
I —— . . i
I~ 71 & M ] [ 3 o
R(0)/2 0 0 0 I 0 0 0
0 R(0)/2 0 0 F By 0 0
BT + Cyt1 T
0 0 R(0)/2 0 F B, 0 0
]
0 0 0 R(0)/2il |0 I A P
L JRNN | S o St B TN+l N



R(0)/2 0
0 R(0)/2
0 0
0 0
1
since AN+1 + PN
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s T el f
0 0 I :
0 0 Fl
- Corg | > (III-40)
R(0)/2 0 FN
0 R(0)/2 0
Cyer = 0 -
Likewise, from (III-37) and (III-38) , we get
i 7
R(0)/2 R(-1) R(-N) R(-1-N) 0
0 R(0)/2 R(1-N) R(-N) BN
]
+ cN =
0 0 R(0)/2 R(-~1) Bl
0 0 0 R(0)/2 | | |1 |
| ; 1 N b ) bt i
| — [
—_— T ~= ] - -
R(0)/2 0 0 0 0 1 el PN
0 R(0)/2 0 0 BN Fl 0 0
)
- Cy |+ + cN
0 0 R(0)/2 0 Bl FN 0 0
0 0 0 R(0)/2 I‘J 0 0 0
N - | L .J__J —_ L
e T
R(0)/2 0 0 0 0 . I
0 R(0)/2 0 0 BN Fl
|
- Cx , (III-41)
0 0 R(0)/2 O Bl FN
0 0 0 R(0)/2 I.J OAJ
ince AJr + P_C = 0
sinc N+1 N =
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Thus our assumptions for the Nth case of (III-36) and (III-37)
lead to the corresponding equations (II1I-40) and (III-41) for
N+lth case. This means that '%(z) and -B(z) are built up from
the reflection coefficients in exactly the same manner as are
F(z) and B(z) except that the negatives of the reflection
coefficients are used.

We will now prove that the extension of the autocorrelation
function given by (III-32) does indeed correspond to the maximum

entropy spectrum by showing that

HGz) + 8 (z ) = el PoF ) . (ITT-42)
Actually, by using (III-35), we see that
H(z) + H (z 1) = -Bégl-F(z) Fliz) + P el ¥ el Bégl
| (TT1-43)
= 57 UEDHIFEH RO F@ +F E RO Fe) ] Fle)
Thus, (I1I-42) will be true if
$oa1 - —F -1
2P = [F (Y RO) Fz) +F (z™Y) R(0) F(2) ] (1TI-44)

N

is true. Our proof will be by induction and will be illustrated by
going from N-1 to N .

From (III-16), we see that if F(z),'F(z), B(z) and 'ﬁ(z) are
the N-1 th order polynomials, then we can write the Nth order

forward filter as

F(z) + =z Bz D) Cy
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and the Nth order, negative reflection coefficient, forward

filter as

.%(z) - zN-B(z_l) CN

Substituting into the right side of the Nth order equation

(11I-44), we have

[FEh+2 el B 1RO [T - 236D cyl +
(7™ -2 el B @ 1RO [ F@) + 2" e gl =
F {z7h) R(0) T(z) + T (z71) R(0) F(z)

-l 3@ RO B +3 () RO 3D ] Cy

SN e R BETH - F ™ r) Bz g Cy

+27 il B'(2) R(O) F(2) -3'(2) RO F2) ] . (I11-45)

The last two terms in (III-45) are zero. To prove this, we

note that the pbackward prediction error expression corresponding to

(IT1-35) is

-1 —l(z-l) . or

ot
~
N
~
|
!
—~
N
~
o~]

H(z) = %_—Bd‘ﬁ_l(z) _BT(z) R(0) . (111-46)

This expression can be derived in the same manner as was (II1-35)
or by looking at (III-37). Using (III-35), we see that

B (z) R(0) F(2) = 2 B'(2) H(2) F(z) and using (ITT-46), we see
that -BT(Z) R(0) F(z) = 2 BT(z) H(z) F(z) so the last term in

(I1I-45) is zero. Likewise, for the next to last term in (I11-45).
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The N-1th order backward prediction error filter equation

corresponding to (III-44) is

22l = [B @ rOBEH +37(@ re0) 32D ] .

From this and N-1th order form of (III-44), we can rewrite

(I11-45) as

T oot
2 [Py —CyPrqCyl

which, from (III-15) and (III-17), is equal to 2 PN



