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III-B. SOLUTION OF THE MULTICHANNEL VARIATIONAL FORMULATION

The constraint or measurement equations that we shall deal with

are

+W
jﬂ P(z) ei21Tant df = R(n) , or
-W
+W
j P(z) z' df = R(-n) , n=-Nto +N, (I1I-3)
-W
where ;é(ﬁ) willgggiggzaénized as the }fﬁ by M cross-correlation

matrix at lag n of the multichannel time series.

Our problem is to find the multichannel spectrum that satisfies
(III-3) and maximizes

+W

fﬁ&n[detP()]df
-W

(I11-4)

To do this, we shall use Lagrange multipliers.

1. Deriving the Multichannel Prediction Frror Filter Equation

We note that (III~3) consists of (2N+1)M2 equations. We thus

need (2'N+1)M2 Lagrange multipliers, Aij(ro » where i, j specify

the matrix element in the nth equation. Our variation is thus taken

over all M2 functions in the spectral matrix P(z)

to give
W
(Sf {2n ]P(z)] - i§ ] )\ij(n) [ Pij(z) zn—Rij(—n)/ZW] }df=0, or
-W >4
w Q. (2) +N .
_{Jifj [m —n=Z_N>\ij('n) 2 1 8P,.(2) df = 0

where Qij is the cofactor of Pij(z) in the P(z) matrix. Thus

Q,.(z)

i - -1
FGT = Py @
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and we have

-1 +N n

.. (2 = b2 A..(n) 2z or

@ = T e
+ N

P L) = 1 a2, (ITI-5)
=N

where A(n) is the matrix of the nth Lagrange multipliers. We
see from (II-6) that the reciprocal of the single channel maximum
entropy spectrum has a finite length autocorrelation function. Equation
(III-5) expresses the multichannel form of this statement, that is, the
inverse of the multichannel maximum entropy spectrum has a finite length
multichannel autocorrelation function.

We now assert that if our constraint equations (III-3) are

consistent, then it must be possible to write

N n -1, -1
z A(n) z = F(z) PN F (z ™) , (I11-6)
n=-N
_ N _ .
where F(z) = FO + Flz + FZZ + ...+ FNz , FO =1, is an Nth
order multichannel prediction error filter and P§l= Png is a

constant M by M power density matrix. We then have

P i) = F(2) P&l ezl L or

l(z) - P—l Ff(z—l

i) P .

)

or by taking inverses of each side,

P(z) F(z) = F_l+(z_l) Py

Since F(z) is minimum phase, F_l+(z—l) contains no positive powers

of z . Thus, the left hand side also cannot contain positive powers
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of z . Since

+ o n N
P(z) = L R(Mm) =z and F(z) = r F 2z ,

] n

equality of the zero th power of =z gives

I ™ =

. R(-1n) Fn = PN

n

and equality of the rth power of z when r 1is positive gives
N

LI R{(r-m F =0
n=0

These equations can be written as the multichannel prediction error

filter matrix equation

R(O) R(-1) R(-N) I PN
R(1) R(0) R(-N#1) Fl 0

= . (III-7)
R(N) R(N-1) R(0) FN 0

We note that the square matrix in (III-7) is made up of our measured

cross~correlation values and that if this matrix is positive definite,

we obtain a unique solution for F and PN . The maximum entropy
n

solution is then given by

P(z) = F—lT(z_l) pF L

N (z) . (I11-8)
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Since the direction of time has no fundamental importance in

spectral analysis, the maximum entropy spectrum can also be derived

in terms of the multichannel backward prediction error filter.

This is done by writing (I1I-6) in the alternative form of

+N
Lz
n=-N

A(n) 2"

+ B zN

B(z) N

B, + B

where 0

z + ... » B

1

multichannel prediction error filter and

constant M by M power density matrix.

Pl (2)

B(z 1) P&_l 3 z)

B—l(z—l —l(z) -

=1 of
) P PN B (z)

or by taking inverses of each side,

P(z) B(z_l) = B_lf(z) P&

Since B(z) 4is minimum phase, B-lT

(2)

powers of z Thus, the left hand side

negative powers of =z Since

+ oo
£ R(n) z"

©

P(z) and

equality of the zero th power

N
%z R() B
n=0 n

N

B(z 1) P&—l 8 (2)

0

(III-6A)

I is an Nth order

-1t

>

pr~1

— ' 1
N PN is a

We then have

or

b

contains no negative

also cannot contain



and equality of the rth power of z when r is negative gives

N

Z R(n+r) B = 0
n

n=0

These equations can be written as the backward multichannel

prediction error filter matrix equation

- I — 7
R(0) R(-1) R(-N) BN 0
R(1) R(0) R(1-N) BN—l 0
= . (II1-7A)
R(N) R(N-1) R(0) I P
S _ e L
The alternative form of the maximum entropy solution is then
given by
P(z) = B—lT(Z) P& B"l(z_l) . (I1I-84)

We shall now show how (III-7) and (III-7A) can be solved

efficiently by use of the multichannnel version of the Levinson

algorithm.
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2. The Multichannel Levinson Algorithm

The extension of the single channel Levinson algorithm to the
multichannel case is complicated by the fact that the multichannel
backward prediction error filter is not just the complex conjugate
time reverse of the multichannel forward prediction error filter.
This fact requires that the backward filter be calculated explicitly
along with the forward filter at each step of the recursion.

In the following we shall assume that there are M channels
and thus the block Toeplitz matrix equation consists of M by M
matrices. Assuming that the N by N block Toeplitz matrix is
positive definite and that we have the solutions to the WN-1lth order
forward and backward multichannel prediction error filter equations,
we shall develop the solution to the Nth order forward and
backward equations.

The N-1lth order forward prediction error equation is

[~ - - ~- P -
R(0)  R(-1) R(1-N) I Py_q
R(1)  R(0) R(2-N) Fy 0
= (I11I-9)
[R(-1) R(¥-2) R(0) ] | Txn] (0

and the N-1lth order backward prediction error filter equation is

R(0)  R(-1) ra-® | 3., . Jo ]
R(1)  R(0) R (2-N) By_, 0

= . (I1I-10)
_F(N—l) R(N-2) R(0) | ‘I | -?ﬁ_l
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Using these equations, we see that

, < e (I1I-11)
- — ["' e p— e -
— - —_ )
R(0) R(-1) R(1-N) R(-N) I 0 PN—l AN
R(1) R(0) R(2-N) R(1-N) Fl BN—l' 0 0
I [e )= + [cy1}
R(N-1) R(N-2) R(0) R(-1) FN_l Bl 0 0
- 1
LF(N) R(N-1) R(1) R(0) _ kn() ] ~I 3 ' “AN‘J PN_B
where
N-1
Ay = I R@®-n) F_ (I11-12)
=0
and
' N-1
b = I R(@-N) B, (II1I-13)
n=0
1 &
with Fy = By =1 . We can immediately prove that Ay = Aﬁ by
noting the matrix equation
t t ~ ]
[0 BN—l Bl I] R(0) R(-1) R(1-N) R(-N) I
R(1) R(0) R(2-N) R(1-N) Fl
-8,
R(N-1) R(N-2) R(0) R(-1) FN_l
R(N)  R@-1) R RO [0 |

is clearly true from (III-11). If we take the complex conjugate

transpose of this equation, the block Toeplitz matrix is unchanged and

1. )

(III-11) says that the right hand side, which will be A& , 1is AN .
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If we define

= — ' —
CN = PN_l AN s (I11-14)
so that
1 —_— —_
AN + PN_l CN = 0 , (II1I-15)

then (III-11) becomes the Nth order forward prediction error filter

equation. The Nth order forward filter is thus

— - r- -
I 0
1 By-1
+ [cyd (I11-16)
Fy-1 By
0 I
and the Nth order forward mean square error matrix is
P = P + ¢ (I11-17)
N N-1 N N °
Likewise, if we consider
- ~(r - = N T K
R(0)  R(-1) R(1-N) R(-N) | }|T 0 iPN—l Ay
R(1) R(0) R(2-N) R(1N) Fl BN—l % 0 0
t — 1
legl + —% [cgl+
/
- - - {
R(N-1) R(N-2) R(0) R(-1) Fﬁ—l B1 f 0 0
13
: !
- 1
3(1\?) R(N-1) R(1) R(O).— .(') | ._I | ‘Q\AN PN-—l

and define
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v - _ ol
cN = PN_l AN s (II1-19)
so that
AT + P c!' = 0 (I11I-20)
N N-1 °N i

then (III-18) becomes the Nth order backward prediction error filter

equation. The ©Nth order backward filter is thus

T ]
I 0
B By-1
[Cyl + (I11-21)
Fy-1 By
0 I
. . L -

and the Nth order backward mean square error matrix is

= C ] -
PN PN_l + AN 8 (I11-22)

If one eliminates A by use of (III-15) , then we have

| ! 1] 1 ' |
Py = Pyop " Pyog Gy Oy = Pgl I-Cycy 1. (III-23)

Likewise, putting (III-20) into (III-17), we get

|

1
Py = Pyop ~ Py Oy Gy = Pyg [ I-cycgl. (I1I-24)



