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III-A. THE ENTROPY OF A MULTICHANNEL TIME SERIES

In order to derive the multichannel maximum entropy spectral
analysis equations, we must first define the entropy per time step
of a set of stationary time series. If our M time series are
statistically independent and gaussianly distributed, then the entropy
per sample of each channel is proportional to the integral of the

logarithm of its spectrum and the entropy per time step for all M
time series is the sum of the entropies. This assumes that the
entropy per step of each channel is finite. See the end of this
section for a discussion of the special case of multichannel entropies
of minus infinity. If we ignore proportionality constants for the
remainder of this section, then we can say that the multichannel

entropy for independent channels is given by
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where P(f) 1is the multichannel power spectrum matrix. In this case,
P(f) is M by M and diagonal with its diagonal elements being given
by PH#f) » ;=1 to M . We will now show that the integral of the
logarithm of the determinant of P(f) is a reasonable definition for
the entropy per time step of a multichannel spectrum.

Suppose we have a set of M gaussianly distributed random
variables, v with a general positive definite covariance matrix, R .
If the variables were independent, i.e., if R were diagonal, then the
entropy of the set of variables would be the sum of the logarithms
of their variances, or equivalently, the logarithm of the determinant

of R . However, if the random variables are not independent, we



can change them to a new set which are independent by using prediction
error filters. For example, we can make our new set of variables

(2) the error in predicting v from Vv (3) the

be: (1) M-1 M’

VM;

error in predicting Vo9 from VM1 and vy 3 etc., until we finally

get for our last new variable the error in predicting v from all the

1
other variables. This set of prediction error variables will be
independent and their entropy has been defined. It is seen that this
procedure is analogous to that used to convert the correlated samples
of a colored time series to the independent samples of a whitened time

series. In matrix form, our "whitening" of the M by M covariance

matrix looks like

where D 1is diagonal with positive elements dm_ and U 1is the

solution of the equation below (shown explicitly for M=4 ).
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where * dindicates an element to be solved for. The first column
of U 1is the filter for obtaining the least mean square error in

predicting v from v , m=2 to M , etc. We note that [Uf =1,
m

1
so that IDI = |R] . Thus, the logarithm of the determinant of the
covariance matrix is invariant under the U transformation. This should
seem reasonable since the unity weight on the predicted variable of
the prediction error filter does not gain up the variable. Thus, since
the U matrix is reversible and does not scale the variables, one can

believe that it should not change the entropy. Using this result, if the

multichannel power spectrum matrix is not diagonal but is constant with
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frequency, its entropy will be given by (III-1). However, we want to
show that (III-1) has broad applicability and to do this we call on
multichannel prediction error filters. An N long multichannel

prediction error filter has a matrix 2z transform of

N
F(z) = I+ Al z + A2 22 + ...+ AN z ,

where the leading matrix is the identity matrix and An , =1 to N |
are M by M matrices. The multichannel prediction error filter
actually consists of M filters, where the mth filter predicts the
next point on the mth channel from the past multichannel data. Because
of the unity weight on the predicted point, the variables are not scaled
and the entropy should not be changed.

Just like the single channel prediction error filter, the multichannel
prediction error filter can "whiten" a multichannel time series, that
is, convert the power spectral matrix to a constant matrix (but not
necessarily a diagonal matrix). 1If this constant power spectral matrix
is positive definite, then the multichannel prediction error filter is
minimum phase and we find that the 2z polynomial given by the determinant
of F(z) has all of its roots outside the unit circle. Furthermore, the
coefficient of z0 is unity. Thus, using the single channel theorem,

we have that

+W

IS?,n |F(z)| af = o ,
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where we have written |F(z)| for the determinant of F(z). Now ,
if we have a multichannel time series with a constant positive definite

. . , . -1 .
spectral matrix P and filter it with F ~(z), we obtain a new spectral matrix
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1+

1+, -1, -1
given by F = (z ")PF "(2), where the dagger indicated the complex

conjugate transpose operation. However, we note that
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Thus, the multichannel spectrum F (z_l)I’fJ(z) has the same entropy

as P . If (ITI-1) is finite for a multichannel power spectral matrix
P(f) , then P(f) can be expressed as F_l+(z—l) P F_l(z) where
F(z) 1isaprobably infinitely long multichannel prediction error filter
and P is a positive definite constant spectral matrix whose entropy
is the same as P(f) . Thus, when (III-1) is finite, it is a reasonable
definition for the entropy of a multichannel time series.

If (III-1) is minus infinity, then this means that at least one
of the channels can be predicted perfectly from present and past
multichannel values. If a channel has such a deterministic relationship
to the other channels, then it should be removed from the spectral
matrix since its actual information content is zero. This is clearly
a logical flaw in the use of (III-1) as the definition of entropy.

However, since we are mainly concerned here with developing a variational

principle, we shall not go deeper into this problem.



