II-D. THE IMPORTANCE OF THE ( R(0), Cl’ C ) DESCRIPTION
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In previous sections of II, we have seen that the ( R(0), Cl’ C2""

description of the second order statistics of a stationary time series
is fully equivalent to the more common autocorrelation function and
power spectrum representations. In fact, the reflection coefficient
description has very practical advantages over the other two when the
second order statistics must be estimated from many short data samples.
In this section, we shall continue to elevate the importance of
the ( R(0), Cl’ CZ’ ... ) representation by showing how it can be
used to create a new and perhaps better definition of a power spectrum.
Following this, a more detailed study of the reflection coefficient
sequence gives results which have both theoretical and practical

importance.

1. A New Definition for Power Spectra

Following the definition of a power spectrum given by Wiener
for a continuous time stationary process, the power spectrum of a

band-limited stationary time series can be defined as

Py = MM oe)
T
T+1l-1
PT(f) = z JWL R(1) cos 2mf T At s (T1-65)

T=-T



where R(t) is the autocorrelation function at lags of <t At and is

defined as

R(t) = =

Here, X is the sample value of the time series at nAt , where

the bandwidth of the process is W = 1/(2At) . We note that
T+l-1
41 R

is the same as using a Bartlett weighting function on the autocorrela-
tion function and thus PT(f);zO . Thus, P(f) dis defined as the
limit of an infinite sequence of non-negative functions of £

Instead of using (II-65), let us define PT(f) to be the maximum
entropy spectrum corresponding to R(t) , = T<t < T . Then we again
let P(f) be the limit of this infinite sequence of non-negative
functions. It is clear that under appropriate convergence criteria,
this new definition using maximum entropy spectra will have the same
limiting function, P(f) , as the old definition using the Bartlett

window.

This new definition has two distinct advantages over the old
definition, the first of which is that the sequence of maximum entropy
spectra converges "faster" than the sequence of Bartlett spectra.
Without attempting to define "faster' in a precise way, we should
note that if the T th order maximum entropy spectrum is convolved
with the T th order Bartlett window function, then we get the T th

order Bartlett spectrum. This is easily seen to be true if we remember

56



57

(1) the autocorrelation function of the T th order maximum

entropy spectrum agrees exactly with R(t) for - T

IA

T < T and
(2) the Bartlett window multiplies an autocorrelation function

by ]T+l—Tl/(T+l) for -T < 1<T and by =zero for ]T] > T .

Thus, both the true autocorrelation function and the maximum entropy
autocorrelation function will be converted into the Bartlett autocorrela-
tion function by application of the Bartlett window. Therefore, as seen
through the Bartlett window, the maximum entropy spectrum and the true
spectrum look the same.

Actually, this is just a special case of how spectra generated
from a variational principle for which (1) is true dominate spectra
conventionally generategjfrom window functions as in (2). Any of the
conventionally generated spectra can be obtained by applying its
window function to any of the variationally generated spectra. We
can now see that our '"faster' convergence statement is based on the
fact that the sequence of Bartlett spectra is a smoothed out version

of the sequence of maximum entropy spectra.

The second advantage of the new definition is that it is simply
related to the sequence of reflection coefficients. Since the T th
order maximum entropy spectrum corresponds to the sequence
( R(0), Cl’ C2, ey CT’ 0, 0, ... ), the sequence of spectra
simply corresponds to using more and more of the true values of the
reflection coefficient sequence. We shall now look at the reflection
coefficients as an infinite sequence of numbers and compare the

properties of the sequence with that of the corresponding power

spectrum.
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2. Spectral Properties in Terms of the ( R(0), Cl’ C2, ... ) Description

In specifying the second order statistics of a stationary time
series in terms of the ( R(0), Cl’ C2, «+«+ ) description, we see that
the zero lag value of the autocorrelation function is the scale factor
for the spectrum and that the reflection coefficient sequence determines
the shape of the spectrum. Most of our study in this section will be
concerned with relating properties of the infinite sequence of reflection

coefficients to those of the spectrum.

We already know that if CN = 1 , then the sequence terminates
at CN and our spectrum consists of a pure set of N delta functions.
On the other hand, if a sequence becomes identically zero after CN ,
then the spectrum is a N th order maximum entropy spectrum. To
help our investigation of more general cases, we shall first see how

the C's can be used to determine upper and lower bounds on the

maximum entropy spectrum.

a. Upper and Lower Bounds on the Maximum Entropy Spectrum

From the Levinson algorithn, we see that if HN l(f) is the

fourier transform of the N-1 th order prediction error filter, then
_ -1i27NfAt _*
HN(f) = HN_l(f) + CN e HN_l(f) . (I1-66)

This equation is the frequency domain form of the Levinson algorithm
and can be useful for calculation of spectra in special cases. By

taking absolute values of (II-66), we find that

[y D] (1= Jegl) s [B @] < B O] (1 + feg ) . a1-67)
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One might notice that there is at least one value of f at
which the upper bound is reached and likewise for the lower bound.
This is proven by the fact that the net phase shifts in going from
W to 4W of H . (f) and e UOCHL (F) differ by 27 .

Starting with HO(f) = 1 , we see that

N N

m ( 1-|cn} ) < [HN(f)l < M (1+ |Cnl) . (I1-68)
n=1 n=1

For N>1 , it is not necessarily true that either of the bounds in
(I1-68) will be achieved. However the bounds in (II-68) are tight

bounds in the sense that one of them can be reached at any given
frequency by properly adjusting the phases of the reflection coefficients.

Now, since

Py = RO 1 (1-|c |2) ,
n=1 n
we can write
N 2 N 2
R(O) 1 (X-|c_| R(0) T (1-]|c_ |9
n n
n=1 n=1
N < P _(f) < , oOr
2 NS N 2
2W H(l+[%J) 2W m @A-]c_|)
n=1 n=1 n
N 1-]c| P_(f) N 1+]c_]
TTEel S moyw 5 T T (11-69)
n=1 n () n=1 1- Cn
N 1+]c|
If QN = ? 1-7¢C » then we have
n= n

- log QN < log PN(f) - log[R(0)/2W] < 1log QN . (I1~-70)
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Since R(0) /2W is the average value of the spectral density,
we see that if our spectrum is plotted on a db scale (which is
almost always the proper thing to do), then our limits are equally

spaced 10 log QN above and below the db value of the average

spectral density.
b. The Average Value of the Logarithm of the Spectrum

We have previously stated and used the fact that

+W
f% | w0 P(F) df = an(P_/2w) . (1I-71)
-W

We shall now prove this by first showing that if F(f) is a minimum
phase filter whose first weight is unity, i.e., an optimum least mean
square prediction error filter for a stationary time series which is

not perfectly predictable, then

+W
j gn F(f) df = 0 . (T1-72)
W
With z = e_127TfAt and df = dz/ (-i2nAt z) , we can express
F(f) as 1 + a;z + a222+ -++ » where this 2z transform is analytic

and has no zeros on or inside the unit circle. Thus (II-72) becomes

14 2 4
Fr vy el n ( 1+ az + a,z + ... ) 2z dz (IT-73)

where the integration is around the unit circle in the counterclockwise

direction.

From Cauchy's integral formula, we have that




if g(z) 1is analytic on and inside the contour of integration,
where the contour encloses the origin. Because of the minimum phase

Y. 2 . . .
condition, n(l + ajz + a,z + ...) 1is an analytic function on and

inside the unit circle and thus (II-73) is equal to

1 2 _
At gn (1 + a,z + 2,2 + ... ) = = 0

Equation (II-72) is also true if F(f) is maximum phase and

has unityfor the z0 coefficient. 1In this case we can write

F(f) =1 + alz_l + azzu2 + ... , where the 2z transform has no

zeros and is analytic on and outside the unit circle. By letting

y = z_l so that y_1 dy = - z—l dz , we have
- - - -
q n (1+ a,z 1 + a,z 2 + ... ) 2z 1 dz =
. 1 2
~ 2 —l
- 4‘2n (1+ a;y + a,y +...)y “dy = 0,
. 2 . ..
since 1 + a,y + a,y + ... is minimum phase.

We now see that if a time series can be generated by passing
white noise of variance P_ through a minimum phase filter

F(z) so that its spectrum P(f) is |F(z)|2 P _/2W , then

+W +W +W
L P(E) df = | (@ /2W) + | fa Fr(z7L) df
W W W
+W +W
+ /, tn F(z) df = ,' tn(P_/2W) df = 2W n(P_/2W)
-W -W

Thus the average value of the logarithm of the spectrum is Qn(R”/ZW)

Since



- R(
b = 2W
+W
1
W ‘f‘zn P(f)
-W

¢. Limit Properties
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2

af 2n(R(0)/2W) + =

n=1

n(l - lcn] (I1-74)

of the Reflection Coefficient Sequence

One of the major properties of the reflection coefficient

sequence is that it converges to zero if the mean square error of

the infinite prediction error filter does not vanish.

That is, if

P >0, then Cn+ 0 . We prove this by noting that
in (1-Jc|?)<-]c|® for |c | <1
n n n
- 2 - 2
Thus P = 2n R(0) + I n(l-[C_|7) <2 R(O) - = |c |° .
[} n n
n=1 n=1
Therefore, if P_>0 , =z fcnlz must converge and thus Cn+ 0.
n=1

An equivalent statement is that if Cn->0 » then P

0 .

However, Cn*>0 does not mean that P_>0 . An example of this is
Cl =0, Cn =1/V/n for n=2 to ® . Then
2 1 1
n (1 - lcnl ) = 1-2) <=2, and
1
in P < in R(O) - y = = - 00
o n
n=2
Thus £n P =-= or Poo =0 .
From (II-69) and (II-70), we see that if Q, 1is finite, then
P_>0 since the spectrum will be bounded above zero and thus

fﬁn P(f) df will be finite. However, Q, can be infinite with P

still being finite.

An example is white noise plus a delta function.
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Without giving any proofs, if a power spectrum is identiéélly
zero over some frequency range, then P, =0 but Cn—>0 . A
power spectrum for which P =0 but Cn->0 is
P(f) = exp(—l/|f]),—Ws]f]sW . If a delta function is added to this
spectrum at f=0 , then we have an example of a spectrum which is

positive everywhere but whose time series is perfectly predictable.
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3. Plotting Maximum Entropy Spectra

The most common error made by a new user of maximum entropy
spectra is not calculating and plotting the spectral function on a fine
enough frequency grid. This error is often induced by familiarity
with the fast fourier transform which calculates values on a dense
enough set of frequencies so that the transform is reversible. It is
overlooked that the maximum entropy spectrum is proportional to the
reciprocal of the power response of a filter and thus can change its
magnitude very quickly. For spectra with sharp peaks, a coarse
frequency grid will give a highly misleading plot of the spectrum.
This has caused users to report that the maximum entropy spectrum is
erratic and inaccurate with respect to the location and power of
different spectral peaks. Thus, one good question is how densely should
the spectra be plotted. Another question that always occurs when
a graph is to be made is where to center the plot and what is its
dynamic range. These questions can be answered in terms of the
numbers R(0), Cl’ CZ’ ey CN which are known before the fourier
transform is calculated.

With respect to centering the graph, one knows that the average
value of the spectrum is given by R(0)/2W and that the average value
of the logarithm of the spectrum is given by 1og(Pm/2W) . Finally,
since (II-70) gives upper and lower bounds for the spectrum in terms
of QN » we see that the dynamic range problem is easily solved.

To form a conservative estimate of how densely the spectrum
should be plotted in frequency, let us assume that the N th order
spectrum has N separate peaks, all of which have the same bandwidth

and achieve the upper bound of R(0) QN / 2W . Assuming that all of
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the power is in these peaks, their bandwidths can be estimated to be
2W/ N QN - If we wish to have at least two points per this bandwidth,
then we need at least 2N QN points from -W to W, or Af =W/N QN .
Of course, for small values of N , this spacing would be too coarse.
However, for N greater than twenty, this spacing will probably be
reasonable.

In using maximum entropy spectra, it should be remembered that they
are spectral density estimates. Thus, the amount of power in a
small bandwidth is not the peak value of the spectral density function,
but is its integral over the given bandwidth. Following this thought,
it should be stated that the peak value and the bandwidth of a spectral
line strongly depend on the level of the "background" spectrum. Thus,
one can expect these quantities to have considerable variance in
maximum entropy estimates from real data. However, their product,
which is proportional to the total power in the spectral line, will
be estimated quite accurately.

It is difficult to visually estimate the power in a peak from
a db spectral plot. Because of this, a plot of the integrated power

spectra, i.e.,

£

/{ P(f) df ,

-W

can be very useful. This function, which should be plotted on a
linear vertical scale (not in db ), goes from zero to R(0). Of
course, if one has not sampled the spectrum densely enough, the
numerical integration may not be very close to R(0) . This is a

powerful clue that the spectrum as plotted is not a good representation
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of the true estimated spectrum and that a denser set of points in
frequency is needed, especially at the peaks in the spectrum.

Appendix A gives an analytic expression for the integrated
power spectrum, although the complexity of the equation makes its
calculation impractical. However, if one has a sharp peak in the
spectrum and the sampling in frequency was not dense enough to
accurately plot the peak, then a simple curve fitting technique can be
used. If there are three points on the spectral peak which are well

above the background level, then the functional form

A

(F-£)°
1 +-———~—~——é
(B.W./2)
can be fitted to the three points. We might note that this function
corresponds to a single pole analog filter, where A = peak value,

fO = center frequency and B.W. = bandwidth ( + 3 db down points).

An estimate of the total power in the peak is obtained by noting

that
+ = A i
j 2 df = ‘2‘ A+ (B.W.)
— © (f_fo)
I
(B.W./2)

There are some observations to be made concerning numerical
accuracy in calculating maximum entropy spectra. It should be noticed
that when there is a sharp, high peak in the spectrum, this means that
the fourier transform of the prediction error filter is very small in
magnitude at the peak frequency. Thus in the fourier transform

calculation, we are summing together a set of N numbers which almost
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cancel themselves out. This is of course bad from a numerical accuracy
point of view. One way of deciding if the number of decimal places
in the arithmetic is sufficient is to note that an estimate of the

possible dynamic range of the spectrum is

N 1+lcn|2
o = I (7-T7e7)"
n=1 n
which is the ratio of the upper bound to the lower bound of the spectrum.

Thus, the accuracy of the calculation of peak values in the spectrum

will be governed by the numerical precision in excess of Q§



