IT -~ C. TIME SERIES DERIVATIONS AND THE BURG ESTIMATION TECHNIQUE

Up to now, our study has started with the autocorrelation values,
R(n), -N < n < N, and we have not dealt directly with the time series
to any appreciable extent. To get closer to the problems involved
in analysis of data samples, we shall rederive some of our previous
results by applying prediction error filters to the time series. The
connection between the maximum entropy assumption and modeling the
time series as an autoregressive process will be made clear. The
problems in directly estimating the autocorrelation function from
time series datawill also bediscussed. These problems are avoided by
using the Burg technique, which directly estimates reflection

coefficients instead of autocorrelation values.
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1. The Least Mean Square Error Linear Predictor

Suppose we have a stationary time series, x. , and we wish to

]

predict the next value of the time series by using a linear combina-
tion of the N dimmediately previous samples. Let -a, be the weight
on the nth previous sample. Then the predicted value of X will

be
N
z (—an) X

n=1 -n

and the error in the prediction will be

N N
x - I (-a)) x = I a_x s
s n=1 n s h=0 1 s
where we define ag = 1 . The mean square error is given by
N £ % N N N T
b} am X “m Z a, Xs—n = z z am Xs—m Xs—n an
m=0 s n=0 m=0 n=0
N N %
= ) ) a R(m-n) a s (I1-46)
m=0 n=0
%
where R(1) = XX o is the autocorrelation function of the

stationary time series.

There are several ways of solving for the a (n=1 to N) that
make the mean square error a minimum. We shall use a method similar
to completing the square. For simplicity, we shall assume that the
N th order autocorrelation matrix formed from R(T) is positive

definite.



Let bn (n=0 to N)
equation

R(0) R(-1)

R(1) R(0)

R(N) R(N-1)

Next, using (II-47), we

N N

* *
z b) (am - bm) R(m-n) (an - bn)

m=0 n=0
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» b.=1 , be the solution to the matrix

0
R(-N)
R(-N+1)
R(0)
note that

7 = . (I1-47)

N N *
z r {a_ R(m-n) a
m=0 n=0 m n

* * *
-a R{(m-n) bn - bm R(m~n) a_ + bm R{(m-n) bn }

N N

m=0 n=0

Thus we see that

N N

*
) r a R(m-n) a
m n

m=0 n=0

Now since PN >0

value of the right hand

*
z ¢ a R(mn) a -P
m n

N

N N

N m=0 n=0

-P + I 3 (a;-b:) R@mn)(a_-b) . (II-48)

and R(m-n) 1is positive definite, the minimum

side occurs when

a
m

= bm . Thus, PN is the

least mean square prediction error and solving (II-47) gives us the

optimum linear filter.

If our filter an

differs from the optimum

filter bn ,then (II-48) tells us how much additional mean square

error the non-optimum filter will have over the optimum filter.



Suppose now that we wish to find the linear, least mean square
error estimate of X not from the N previous values of the time

series, but from the next N values.

for the

value of

nth later sample.

x will be
s

N
Z

n=1 <_dn) xs+n

and the error in the estimate will be

X
S

where d

ponding to (II-46) through (II-48), it will be obvious that we have
just reversed the direction of time.

the dn will satisfy the matrix equation

p—

R(0)

R(-1)

R(-N)

2z

- i (—dn) Xs

n=1

R(1)

R(0)

R(1-N)

+n

Il
™~
o
v

R(N) 1

R(N-1) d

R(0) dN

or, by taking complex conjugates,

—

R(0)

R(1)

R(N)

L ad

R(-1)

R(0)

R(N-1)

R(-N) ” 1

R(1-N) d

*

R(0) d

=

O
(@

Let —dn be the optimum weight

Then the Nth order backward predicted

o = 1. 1f we continue on and develop the equations corres-

Thus, according to (II-47)
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(I1-49)

(IT-50)



Thus, the optimum backward prediction error filter is just the
complex conjugate, time reverse of the optimum forward prediction
error filter. Thus, we can write the backward prediction error,

hsgin terms of the forward prediction error filter coefficients as

N

*
= L
hs an Xs+n

n=0
We should note that the backward least mean square prediction
error is also equal to PN' However, the fact that the forward and
backward prediction error filters have the same output power is not
a unique property of prediction error filters. Actually this property
is a simple consequence of the complex conjugate, time reverse property.
This is clear from the fact that for an arbitrary filter, a_  + a.z +

0 1

N
,;+aNz » we have

N L2 N LN N 2
Z = = ©
|n=0 a_z ngo anz mEO a_z }m§0 amz l

Since the power responses of these two filters are the same, their
output powers are the same for any input time series.
*

Finally, we should note that with a = dn , we can write (IT-49)

in the form of the by now familiar equation,

- ] x [
R(0) R(-1) R(-N) ay 0
*
R(1) R(0) R(1-N) I . 0 (1I-51)
R(N) R(N-1)  R(0) 1 \ Py
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2. The Levinson Algorithm Revisited

It is instructive to develop the modern Levinson algorithm by

means of prediction error time series.

the x
s

To begin, suppose we filter

time series with its optimum, Nth order, forward prediction

error filter to get the forward prediction error time series, ey »

where

N
e = %0 3, ¥oop (11-52)
The corresponding backward prediction error time series, hS , is
given by
N
= Z a*x (II_53)
hs n=0 n ~s+tn
These time series and filters can be pictured for N = 2 as
.3 %2 %1 S °1 %2 o3
2 21 1
X_ g X_p X Xy X Xy Xgoo... (IT1-54)
1 %
1 *2
h h
h—3 h—2 -1 hO hl 2 3

Here, the filters

series, with the

are to be

e

and h

unity weight coefficient of

The weights

eS a minimum.

e

n *

a

Thus we have x

and

thought of as sliding along the x time
time series being output relative to the
their respective filters.

, are optimum weights for making

% *

e = x e = 0 since
s-1"s s-2's i



otherwise eg would still be partially predictable from Xs~l and
i = + +
X o Furthermore, since e X a;x. 1 ayK__5, We have
* * -
e e = e x = P.. A similar set of equations holds for the
s s s's N

backward prediction case. The problem we shall now Jlook at is how

to include x in an optimum way to improve our prediction of X

s-3

If we only had X available for estimating X then the least

-3

mean square prediction would be gXg_3> where

xs—3 Xs—3

However, x is correlated with x and x and thus we
s-3 s-1 s=2

cannot simply sum the prediction from x with the prediction from

s=3

X _q and X _o¢ Such a procedure would end up predicting part of

X twice. However, if we had first removed the part of X, 3 that

is correlated with xs—l and X _p s then summing the two predictions

would give us the correct answer. Looking at the backward prediction

* %
error term, hs_3 = Xg_3 + ay X _o + a, X _q » we see that
* %
Xs—lhs—3 = xs-Zhs—B = 0 and thus hs_3 is that part of Xo_3
that is uncorrelated with X and X .
s-1 s=-2
Noticing that h. = n * x +ah
oticing that h _,e, = f5-3%g %1 hs-—3xs—l #oRg 3%g0

= h X, s the optimum weight (—c3) to apply to h to predict

s=3

% %
X e
_ c3 _ s-3 é__ _ _S8-3s (T1-55)
»*

45



46

%
where P2 = hshs = eses . Summing the two predictions, the
. » . . '
third order prediction error series becomes, e, = e + c3h 3 =
s s-

* *
+ + -
X (al cqa ) Xo 1 + (a2 + c3al) Xgy + Cq 35_3 (see 1II-19) a?d

o _ ( * " *h* )( + h ) _ ¥ 1 %* ) 11-20
e' e e cgh,_5) (e cho o = e e, (1 - C3C, (see -20)

s s s 3
by use of (II-55).

Finally, we complete this derivation of the modern Levinson

algorithm by noting that

{0 a’; ai 1} rR(O) R(-1) R(-2) R(-3) 1 \
— R(1) R(0) R(~1) R(=2) a,
h 48 = } = A,
R(2) R(1) R(0) R(-1) a,
R(3) R(2) R(1) R(0) Ko
L \

(I1-56)

and thus

5y

C = =

3

N

corresponding to (II-17) and (II-18).

3. Whitening the Time Series

The error time series produced by an infinite length prediction

error filter has a white power spectrum. We easily prove this by

*
noting that 1) e x =0 for n>1 and 2) e is a linear combi-
s s-n - s-m
*
nation of the x , 1 > m. Therefore e e = 0 for all m > 0 and
s-n - S s-m

we have the z tranform of the autocorrelation of e to be simply

*

= P . The power spectrum of the Xg time series can easily

e e
s s 0

be found from the relation that the output spectrum is the product
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of the input spectrum times the power response of the filter. In
this case, the output spectrum is Pw/2w =P At, and if the z

. . s . £ n
transform of the prediction error filter is nZO az , the output

spectrum is

P At
P (z) = -~
out [ a zn][ % a*z_n]
n=0 n 0 n
Let us look at (II-54) again and assume that exx =0

s s-3

*
Then eshs_3 =0 and c3 = (0. In this case, the optimum 3rd order
prediction error filter is the same as the optimum 2nd order prediction

%
error filter. Continuing on, let us also assume that e Xy = 0

for n > 3. If this is true, we can see that the 2nd order prediction
error filter will also be the optimum infinite length filter. It

then follows that the true spectrum of the X time series is given
by
P, At
2

2 n 2 % —n]
[néOanz ][nEOanz

which is the second order maximum entropy spectrum.

4. The Autoregressive Process

Let us take the prediction error equation

N
s T n§0 an xs—n ’
and rewrite it as
N
X, = e - nél a X, - (11-60)
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If we assume that the e, are linearly independentVGinébles, i.e.,
if the e time series has a white spectrum, then the X time
series generated by (II-60) is an Nth order autoregressive process.
In order for the feedback operation of (II-60) to be stable, the
filter ngo anzn must be minimum phase. We have already shown this
to be true since it is an optimum prediction error filter. The
spectrum of the X time series is clearly given by the Nth order

maximum entropy spectrum.

5. Problems with Direct Estimation of Autocorrelation Functions

So far, in this section we have discussed prediction error filters
in terms of time series but have assumed that the autocorrelation
function is available for their calculation. Of course, in practice,
the statistics of the stationary time series must be estimated from
the time series itself. We shall discuss here certain problems which
arise when one attempts to directly estimate the autocorrelation
function from a finite sample of a stationary time series.

Suppose our sample consists of N consecutive values
( X5 Xgs eees Xy ) and that we wish to estimate the autocorrelation

*

function, R(7) = x . One common method of deing this is by

X
n ntT

calculating the sum of lag products, i.e.,

N-1
X
n=1

*
X X
n  nt+t

We should note that this function of T is the exact "energy"
autocorrelation function of the infinite time series

(..., 0, 0, x 0, 0, ... ) . 1If one divides

17 Koo e XN_10 Xy

this "energy' function by N to get an estimate of the autocorrela-
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tion function of the stationary time series, then such an estimate is
guaranteed to be a possible autocorrelation function. Our autocorrela-

tion matrices will then be positive definite and the solutions for

the prediction error filters will make sense.

The problem with estimating the autocorrelation function by

R - Lo
(1) = N XX (I1-57)
n=1
is that R(t) 1is biased for * # 0 . That is, the average value
of R(tr) 1is not equal to the true value of R(t) . 1Instead,
we have
R(t) = “I\I—;I—TR(T)

One can avoid this problem by changing (II-57) to

R(r) = -1 (11-58)

so that

R(1) R(1)

However, if one uses (II-58), then the resulting function may

not be a possible autocorrelation function and our matrix equations
will not give sensible answers. A simple example of how (II-58)
can fail is to consider the three point sample ( 1.0, 1.1, 1.0 ) .

Then, (II-58) gives R(0) = 1.07 and R(1) = 1.1
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A considerably different approach to esfiméting the autocorrela-
tion function is made highly practical by the fast fourier transform.
In this case, one takes the discrete fast fourier transform of the
time sample, forms the frequency spectral function by taking the
absolute square values and then inverse fourier transforming to get
the autocorrelation function. This procedure is a computationally

quick method of obtaining the function

A 1 N
R() = § %2 X X . > (11-59)
n=1
where the time series is ( ..., Xno1? X0 X0 Koo cees X Xps Xps oo ),

i.e., where we assume that the N point sample repeats itself

periodically. It is clear that R(t) will give us a possible

X as
D

autocorrelation function , but including the product Xy X

part of our estimate of é(l) does not make sense.

The problems encountered by these different ways of estimating
the autocorrelation function are due to assumptions imposed upon us
about the ends of the data sample. If our data consists of one
long data sample, so that there are only two ends to give us
trouble, then these problems are not severe. However, if our data
consists of many short samples, where the ratio of ends to data is
high, the conventional methods discussed here have serious problems.
We shall now discuss a method of estimating the statistics of a

stationary time series which avoids these "end effect' problems.
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6. The Burg Technique of Estimating Reflection Coefficients

As was shown in II-B.5, there is a one-to-one relationship
between the sequences (R{(0), R(1), R(2), ... ) and
( R(O), Cl’ C2, «e. ) . Thus, the second order statistics of a
stationary time series can be specified in terms of R(0) and
the reflection coefficients as well as in terms of the autocorrela-
tion function (or the power spectrum). The Burg technique of estimating
second order statistics from time series data is based on direct estima-
tion of reflection coefficients instead of autocorrelation function
values. By doing this, it will be seen that the end effect

problem is avoided.
To describe the Burg technique in general terms, we shall

assume that the reflection coefficients Cl’ C C have

99 w5 Gy g

been obtained and that we now wish to estimate CN . From

C e - 3 . .
1’ C2, s CN_l , we know the N-1 th order prediction error

2 N-1
i + + ... + . i 3
filter, 1 alz + azz aN_lz From this, we can

write the Nth order prediction error filter in the form

1+ (a, +C a* )z + + (a + a*) N-1 + C N The
17 "N ?N-1 N-1 ¥ G23p) 2 NZ

correct value for CN is the one that makes the power output of this
filter a minimum when it is applied to the stationary time series.

To estimate the power output of this filter, we apply it to
our time series data samples. In particular, we consider all
possible sets of N+1 consecutive samples that can be formed from
our time series data. For example, if N=3 , and our data consists
of three separate samples, ( X1, Xy Xgy X5 Xgs Xgy Xy ),
( Xss X515 X5gs Xsgs Ko, ) and ( %90* ¥91° X929 ), then we have
six possible quadruplets, ( x, x

l’ 29 X3! Xll- ), ( Xza X35 Xl;’ X5 ) b

( X33 X49 XS’ X6 )s ( X4’ XS, X6’ X7 )9 ( XSO’ x519 X52, X53 )



and ( x Let us assume that there are M

51° X520 X535 X5y )

sets of N+1 tuplets, i.e., ), m=1 to M

( Xym? Xops cc o XN+l,m
and, to be most general, that we use a positively weighted average

in estimating the average square output in applying the prediction

error filter to these M samples. The estimated power is then

taken as
? Wolcox, +( FCa)x, ...+ (a, +C a )x. + ’2
copom N LT N TN T T T R T e P T
M
with I W =1 , W =20
m m
m=1
If we write
= +
“n aN-1 X2,m + a1 XN,m XN+l,m
and
_ + * + + *
bm - Xl,m a1 XZ,m aN-1 XN,m ?
then (II-60) can be written as
M 2
T W | e +C_b . (II-61)
m m N m
m=1

We note that e and bm are forward and backward prediction error
values.

Since the average power out of the backward prediction error
filter is the same as out of the forward filter, we also could have

estimated this power equally well by

M *
r W b +C_. e
m m N m
m=1

12 (I1-62)
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We note in particular that the average values of (II-61) and

(II-62) are the same, independent of the value of C However,

N -
for a general set of M N+l tuplets, (II-61) and (II-62) do not
have the same values. Since there is no reason to prefer (II-61)
to (II-62) and vice versa, and since they are estimates of the same
quantity, the average of the two should be a better estimator than
either one alone. Thus we shall use

M

1
5 L W {le +Cyb |
m=1

2 b +C e |2y (T1-63)
m N m '

Note that the same weight, Wm » 1s used on the mth sample for

both the forward and backward terms.

We now wish to find the value of CN that makes (II-63) a

minimum. Since (II-63) can be written as

* f.M * * M * 7000
{1 C.H Z W(e e +b b )2 W e b 1 ;
N _ m' m m m m _ m m m ]
m=1 m=1 | E
b
2% Wb p * * lx
m °m m 2 wm(emem-*-bm bm) CNf
=1 mn=1 5 i ..‘
the minimizing wvalue of CN is
M *
2L W b e
m=l m m m
N M % *
Z W (ee +b b))
m' m m m m
m=1

Furthermore, because Wm > 0, our two by two matrix is non-negative
definite. Thus,

M M

* * *

| 22 W b e | < 2 W (e e +b_b_)

m m m m™ m m m m
m=1 m=1
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and we see that ]CNI <1 , no matter what values we have for our
data samples. Thus, the estimated value for CN is always a possible
value for the N th reflection coefficient.

Depending on the maximum length of any particular sample
of data, it is clear that one can use this procedure to estimate
Cl’ C2, -+« « Then together with a reasonable estimate for R(0),
one has the information to calculate the corresponding autocorrela-
tion function and/or maximum entropy spectrum. It is to be noted that
the Burg technique allows one to handle disjoint time series samples
in a very general way and that there are no implied assumptions
about the data off of the ends of the samples. Furthermore, since
the magnitude of all estimated reflection coefficients must be less
than or equal to unity, the procedure automatically generates a

possible sequence of reflection coefficients.



