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II-B. EXTENDING THE AUTOCORRELATION FUNCTION

The general problem of starting with an incomplete set of auto-
correlation function lag values and determining some particular power
spectrum that is consistent with these values is equivalent to determining
a particular completion of the infinite autocorrelation function. In
this section, we shall look at the practical problem in which the known
autocorrelation lag values are R(n) , |n|.fN . Thus, specifying a
consistent power spectrum is identical to specifying an infinite, allowable,
extension of these first N+1 1lag values. By allowable, we mean that the
fourier transform of the extended function is non-negative, i.e., a
power spectrum.

It should be clearly recognized that this section deals with the
general problem of spectral estimation from autocorrelation information.
In this context, we shall develop and prove the Fundamental Autocorrelation
Matrix Theorem which governs the general extension of autocorrelation
functions. Later on, we shall see that the special extension which
corresponds to generating a maximum entropy spectrum has some particularly
appealing properties.

In section II-A, the solution to equation (II-15) was derived
and shown to be unique under the assumption that the N by N
Toeplitz submatrix was positive definite. The following useful
theorem generalizes this result.

1. The Shortest Prediction Error Filter Theorem

A solution to the Nth order prediction error filter equation

rR(O) R(-1) R(-N) 1/ 1 ’"'NPN \

R(1) R(0) RA-NM) | ) a, 0 \ 122,
= I1-

R(N) R(N-1) R(0) La




always exists 1f the N+1 by N+1

non-negative definite.

then there is more than one solution to the equation.

If the rank of the matrix is less than
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hermitian Toeplitz matrix

is
N,

However, the

solution corresponding to the shortest prediction error filter is

unique.

Proof:

N+l are trivial.

Then the solution to the M+l by M+l

form
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Using (1I-23), we canwrite for the next higher order
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is an arbitrary complex number.

If we now premultiply by the complex conjugate transpose of the left-side

column vector,

zero, then g
dicts
Thus, choosing
order

the M+1 th

that the

we end up with the real scalar

%
gh +q A.

If A 1is not

can be chosen to make this quantity negative which contra-

the non-negative definiteness condition.

Thus, A

must be zero.

q to be zero, which is equivalent to augmenting the Mth

order equation.

Continuing with this argument

Mth order filter is also a solution to the

prediction error filter by a zero, we have the shortest solution to

, We see

Nth order



equation.

unique.

Also, it is clearly both the shortest such filter and is

The next theorem concerns a Cholesky type factorization of the

Toeplitz matrix.

matrix be positive definite.

Toeplitz case.

2. Factorization of the Toeplitz Matrix

Given an N+1 by N+1

matrix, one can uniquely solve the matrix equation

-
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R(2)

iR(N)

dos

where the *

in effect (II-22)
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times.

o
1 0
al 1
a2 bl
a b

N °N-1 SN-2

hawase

terms are not required explicitly.

We make (II-24) unique when the

The usual Cholesky factorization requires that the

This condition is not necessary for the

non-negative definite hermitian Toeplitz

*

&
Py-2
0

This equation is

Toeplitz matrix is singular by using the shortest prediction error

filters.

of the prediction error filter matrix we have

B *
1 al
0 1
0 0
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*
ay R(0)
*
bN—l R(1)
1 R(n)

R(-1)

R(0)

R(N-1)

R(—N)—

R(1-N)

R(0)

-

Premultiplying (II-24) by the complex conjugate transpose

The right-hand matrix is diagonal because it was obtained from

(IT-24) by multiplying two upper triangular matrices together and thus

must be upper triangular.
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ﬂ(II—24)

(1I-25)

0

0
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However, the left-hand side of (II-25) is also



hermitian and thus must be diagonal.

matrix is clearly non~singular, one can express the autocorrelation

matrix in the Cholesky type factorization of

v~
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Now, since the prediction error filter

(II-26)
~1

One important consequence of this theorem is that any non-negative

definite Toeplitz matrix can be extended indefinitely to higher order
non-negative definite Toeplitz matrices.
Toeplitz matrix is non-negative definite, then there exists an N+1 th
order non-negative definite Toeplitz matrix with the

as a submatrix.

R(N+1)

-
R(0)

R(1)

R(N)

R(N+1)

g

such that

R(-1)

R(0)

R(N-1)

R(N)

To prove this, we

- -
R(-N-1) 1
R(-N) a
R(-1) a
R(0) 0
N+1 th

One can then express this

Since the
non-negative definite.

can be continued indefinitely.

P's are non-negative, the

That is, if the

Nth

order

order matrix

note that there isalways a unique value for

0 0
1 0
aN—l 0
aN 1

order matrix in the form of (II-26).

N+1 th

order matrix will be

It is clear that this extension of the matrix
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The study of sampled autocorrelation functions relies almost

completely on the following theorem.

3. The Fundamental AutocorrelationMatrix Theorem

Given a set of complex numbers, R(n) , !nJ:SN » where R(n) = R*(-n),
then these numbers are the beginning of an autocorrelation function if

and only if the matrix

- -
'R(0) R(-1) R(-N)
R(1) R(0) R(1-N)
(1I1-27)
R(N) R(N-1) R(0)

is non-negative definite.

To prove the necessary condition of this theorem, we begin with the
definition of the autocorrelation function of the stationary time series,

X, » as

*
R(n) XX . (11-28)

Knowing R(n) , we can write the average square value of

N

y. . = L a_x , where the a's are arbitrary, as
n =g S 1D-S
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* Ig * * 1;
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A * 3 Treo R( -1) R 17
{ag a; .. ag }R(O) ( €N) a,
R(1) R(0) R(A-N) a; \- (I1-29)
t.
R(N) R(N-1) R(0) | a i
L. o ~ N"

*
Since Y, Vg >0 and the a's are arbitrary, we see that the

matrix (II-27) must be non-negative definite. Thus, we have proved
that if the R(n) , In|<¢N , are the beginning of an autocorrelation
function, then the N+1 by N+l Toeplitz matrix formed from these
values is necessarily non-negative definite.

Toprove the sufficiency part of the theorem, we shall use a
procedure similar to the one that Wiener used in the continuous case.
The proof uses the argument that the average square output of any

narrow-band filter must be non-negative.

The digital filter

_ - N-1 N N
i(1+o¢z+oc‘2z2+...+oLNlle)=i y ool l-az
VN /N n=0 AN l-az ?
where o = e iZTTf0At

» has the power response of

. 2
B (f,f ) = 1 1-o"z" 1-g NN . sin [N At(f—fo)]
NY 70 N 1 -0z g1 - 5

L-a e N sin”[TAt(£-£,)]

(II-30)
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The integral of BN(f,f from ~W to +W is unity. Furthermore,

0’

if f does not lie within Af of fo (taking aliasing into

consideration),the maximum value of BN(f,fO) is less than
1 /N(ﬂAtAf)2 . Thus, as N »» , the entire unity area of BN(f,fo)

begins to lie within an arbitrarily small Af of f0 .

Let us assume the converse of the fundamental theorem, namely,
that for all functions Q(f) , such that

+ o

n=— «©

b

where for hﬂ <N the R(n)arethe given R(n) , Q(f) will be negative
at some frequency, fl - This means that Q(f) must be negative within
some region Af about fl - Thus, for N large enough, say N=M |,

we will have

+W

S B, (£,£)) Q(f) df <0 . (II-31)
—W

But this integral is also equal to

{1 ot o ot Ty RO RG-D) R(-M+1) |( 1 \k
R((1) R(0) RE-M+2)1h oy )

1 17

: |
R(M-1) R(mM ~2) R(0) qlM_lj
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i2nf. At

where a; = e 1 . Thus, the M by M matrix is not

non-negative definite. Therefore, assuming the converse of the funda-
mental theorem, we conclude that there are some non—-negative definite
Toeplitz matrices which cannot be extended indefinitely in a non-
negative definite way. Since the factorization theorem has shown

this to be false, we have proved the sufficiency part of the fundamental
autocorrelation matrix theorem.

4. Allowable Values for the Next Autocorrelation Lag

Suppose we have the first N values of an autocorrelation function,
R(n) , ( n=0 to N-1 ), and we wish to determine what values are possible
for R(N) . If we form the N+1 by N+l autocorrelation matrix, the
Fundamental Autocorrelation Matrix Theorem tells us that the N by N
Toeplitz submatrix will be non-negative definite and that R(N) will
have a permissible value only if the full N+1 by N+1 matrix is also
non-negative definite.

Let us first look at the situation in which the N by N Toeplitz
submatrix is singular. In this case, if (1, b

) is the

l’ M)

shortest prediction error filter, we see from (I1-23) and the argument
following that equation, that for the N+1 by N+1 matrix to be

non-negative definite, we must have

M
% R(N-n) bn = 0, ( b0 =1), or
n=0
M
R(N) = =~ 3 R(N~-n) bn . (I1-32)

n=1
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Thus, if an autocorrelation matrix is singular, the next value of the
autocorrelation function is uniquely specified. It then follows by
simple induction that the entire autocorrelation function is determined.
We shall see that this situation means that the autocorrelation function
consists of a finite set of cosine functions, i.e., the spectrum consists
of a set of delta functions and the time function is a sum of pure
frequencies.

If the N by N Toeplitz submatrix is non-singular, then the only
condition on the N+l by N+l matrix is that its determinant be non-negative .
In discussing (II-15),we noticed that the determinant of the N+1 by N+1
matrix was equal to P times the determinant of the N by N sub-

N

matrix. Thus our requirement is that PN be non-negative, which from

(I1-20), means that [c <1 . By combining (II-17) and (II-18),

J

we can write
N-1
R(N) = - nil R(N-n) bn -y PN_l . (I1-33)

Iif Ich <1 , we see that the value of R(N) in the complex plane lies
N-1

on or inside a circle of radius PN_l centered at - I R(N-n) bn .
n=1

If one chooses a value for R(N) and calculates the next higher

order prediction error filter and its mean square error, PV , then
i
(II-33) can be used again to determine the permissible values for
R(N+1) . 1In this manner, one can generate any permissible extension of
the autocorrelation function. It is interesting to note that since
2 - ,

P_=7P ( 1-—IcX[ ) , the radii of the sequence of circles cannot
X X-1
increase and will decrease unless the c¢'s are zero. That is, if

one chooses a value for R(X) other than the center of its circular

range, the circle for R(X+l) will have a reduced radius. 1In fact,
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if R(X) dis chosen to be on the perimeter of its circular range, i.e.,

ICX] =1, P, will be zero and there is no longer any choice in

X
selecting the value of R(X+l) . This moves (II-33) into the singular
situation that is governed by (II-32).

From the above observations, if one had to make the "best" selection
for R(X) , choosing the value in the center of the circle is the most
appealing. One "argument" for the center is that is is the only unique
point in the disk. Any other point has an infinite number of other
points of equal radius, etc., and to argue that a particular one of them
is better than the rest would be difficult. A second "reason" for
choosing the center is that this gives one the biggest disk for selecting
the value of R(X+l) . That is, one maintains the maximum freedom of
choice in the further extension of the autocorrelation function. A
third "'reason' could be that selecting a value for R(X) on the perimeter
should be a "worst' choice since a spectrum consisting of a pure set
of spectral lines is improbable. The center of the disk is the point
that is the furthest from these bad points. As will be shown later,
if one extends the autocorrelation function to infinity by always
selecting the center value for each consecutive lag value, one generates
the autocorrelation function corresponding to the maximum entropy
spectrum.

We are now ready to prove the following theorem which relates
the c, of (II-18) to the autocorrelation function and vice versa.

5. The Autocorrelation—-Reflection Coefficient Theorem

There exists a one to one correspondence between an autocorrelation
function and the set of numbers, ( R(0) , Cl 5 Cy 5 -oe ) , where

R(0) 1is the zero lag value of the autocorrelation function and is

thus real and non-negative and where the c, are the reflection



coefficients of (II-18) with the |cnl <1 . This set of numbers

terminates with R(0) 4if R(0) = 0 or at cy if ]cnl =1

Proof: 1If one is given the set ( R(0) , C1 5 Cp o5 vn- ) , then one

29

can recursively generate the unique set of numbers ( R(0), R(1), R(2), ...

by using (II-33). This is seen to be true if one notes that the
bn and PN_l values needed to find R(N) are uniquely determined
by ( R(0), R(1), ..., R(N-1) ) . 1If Ic| = 1 at some stage, then
the mean square error will become zero and the further extension of
the autocorrelation function will be governed by (II-32). Thus,
the sequence of reflection coefficients can be terminated.

Likewise, if one is given the set ( R(0), R(1), R(2), ... ),
then the unique set ( R(0), Cys Cos cne ) can be generated by
inversion of (II-33) as long as the PN__l is non-zero. Of course, if

P 0 , then must have been equal to one and the ¢

N-1 ICN-:Ll

sequence can be terminated since the values of R(N), R(N+1),

are then rigidly determined by the condition that the input set

( R(0), R(1), R(2), ... ) Dbe an autocorrelation function. A simple
corollary of this theorem is that there is a one-to-one correspondence
of the finite sets ( R(0), R(1), R(2), ..., R(N) ) and

( R(0), Cls Cps +evs C ) with a suitable statement made about the

N

special case when some ¢ has unit magnitude.

The most important observation to be made about the Autocorrelation-

Reflection Coefficient Theorem is that it shows that the set

( R(O), Cys Cos oee ) gives us a new representation of the second
order statistics of a stationary time series. The best known
representations are, of course, the autocorrelation function and the
power spectrum. The "best" representation normally depends on how and

why the time series is being analyzed. It will be seen later in



chapter III that the reflection coefficient representation is
particularly well suited for estimating the second order statistics
from finite data samples of the stationary time series.

6. The Prediction Error Filter - Minimum Phase Theorem

OQur proof of the sufficiency part of the Fundamental Autocorrela-
tion Matrix Theorem was by contradiction. In the next section, we
shall prove the sufficiency part of this theorem for positive
definite autocorrelation matrices by actually constructing the
corresponding maximum entropy spectrum. To do this first requires that
we prove that the prediction error filters as generated by (II-19) are
minimum phase, i.e., they have all of their zeros outside of the unit
circle. The proof will use the following simplified theorem by
Rouche.
If F(z) 1is a polynomial in z and G(z) is also a polynomial
in z , but where |G(z)[ <[F(z)| on the unit circle, then F(z)
and F(z) + G(z) have the same number of roots inside the unit circle.
The proof uses the fact that if a polynomial H(z) has N
zeros inside the unit circle, then as one moves 2z on a complete
counter—clockwise circuit around the unit circle, the net phase shift

in H(z) 1is 27N , and vice versa. We write
F(z) +G(z) = F(z) [ 1 +G(z)/F(z) ]

and note that the net phase shift in F(z) + G(z) as =z goes

around the unit circle will be the sum of the net phase shifts in
F(z) and 1+ G(z) /F(z) . Since |G(z)| < |F(z)] on |z ]|=1,

the real part of 1 + G(z) /F(z)
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must always be positive and thus it can have
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no net phase shift as 2z goes around the unit circle. Thus, G(z) + F(z)
and F(z) have the same net phase shift and thus have the same number
of zeros inside the unit circle.

We can now show that if the magnitudes of all of the reflection
coefficients in the sequence ( C1» Cgs wevs Cy ) are less than unity,
which means that the Nth order autocorrelation matrix is positive

definite, then the Nth order prediction error filter (P.E.F.) is

minimum phase.

N-1
Let F(z) = I bn z" be the N-lth order prediction error
n=0 . ¥l % Non N % -1
filter, where b,=1 . Then if G(z) = ¢ I b =z =c¢_.z F(z ™),
0 N n=0 P N
where ICVI <1 , then when ]z] =1 , we have
D
N _* -1 N *
6(z)| < |20 F (2] = |2 [F@)] | = |Fz)] .

From (II-19), we see that the Nth order prediction error filter is
F(z) + G(z). Thus, if the N-1lth order P.E.F. has no zeros inside
the unit circle, neither does the Nth order P.E.F. This induction
proof is completed by noting that the zero th order P.E.F. has no
zeros at all and is thus minimum phase.

A different and perhaps more basic approach is used in III-C.2 to

prove that multichannel prediction error filters are minimum phase. The

“multichannel proof of course applies to the single channel case.

7. The Maximum Entropy Extension

Suppose we have the first N+1 values of a positive definite
autocorrelation function and we solve (II-15) for the Nth order
prediction error filter, A(z) =1 + az + azz2 + ...+ ayz - If
we now choose the zero extension of the reflection coefficient sequence,
starting with Cy41 ° We see from (II-32) or (II-33) that the corresponding

extension of the autocorrelation function will be given by the convolu-

tional feedback operation of



N
R(m) = - I R(m~n) a s, m>N , or
n
n=1
N
E R (m-n) a = 0O , m>N , ay = 1.
n=0

Let us define

H(z)

the function H(z) as

R(0)/2 + R(1)z + R(2)z% + ...
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(I1-34)

(I1-35)

% -
It is clear that H(z) + H (z l) is the z transform of the autocorrela-

tion function.

Furthermore, since the cosine transform of H(z)

is

one half of the cosine transform of the autocorrelation function, we

see that the real p

H(z) with the Nth

must be of the form

H(z) A(z)

since (II-34) tells us that

that

and that H(z)

a Taylor series in

art of H(z) is non-negative.

If we convolve

order prediction error filter, A(z) , the result
R(O) 2 N . _ R@) _
3 [ 1+ dlz + d2z + ...+ sz ] = > D(z) , (II-36)
dm=0 for m>N, We see from (II-36)
_ R(O) D(z) )
H(z) = > NG (11-37)

is a legitimate z-transform expression, that is, as

z , it converges on the unit circle because A(z)

has no zeros inside the unit circle.

We now wish to derive the relationship between D(z)

and A(z)

The derivation is by induction and will be illustrated by going from

N=2 to N=3 .
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The first three terms in the convolution of the second order

. , 2 . ,
prediction error filter, 1 + a,z + a,z with H(z) can be written

in a matrix equation as

- T Y
R(0)/2 O 0 I 1 ( 1
- RO -
R(1)  R(0)/2 0 al( = = d, g . (T1-38)
R(2) R(1) R(0)/2 a d
" . i 2,

This 2nd order prediction error filter of course obeys the

Toeplitz matrix equation

oy ey

PR(O) R(-1) R(-2) '/1 \ ’ P /)
k 2

R(1) R(0) R(-1) a, /= y0 & . (II-39)
i

R(2) R(1) R(0) a2§ 0 S

Subtracting (II-38) from (II-39), one gets

R(O)/2 R(-1) RrR(-2) |[1 (Pz} 1)
0 R(0)/2 R(-1) |{a} = l 0 ; - 52(—0— dl(
0 0 R(0)/2 azi \o dzj
X 02

Taking the complex conjugates of these equations and rearranging

the order, one finds that

f‘ l‘ .)_\ . : ‘\\ ._ =
R(0)/2 0 0 a’; g’o < ‘) d; 3

) * ) o R(O) /J % _
R(1) R(0)/2 0 a, \ 0 072 dl{ (11-40)
R(2) R(1)  R(0)/2]\1 LPZB 1 }l

" ~ {
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Using (II-38) and (II-40),we can generate the 3rd order equi-

valent of (II-38) by

i “ Yy
'R(0)/2 O 0 0 {0 j ;
; n
R(1) R(0)/2 O o | azk | _
¥y '
R(2) R(1) R()/2 0 g \i al | |
EoT
R(3) R(2) R R(O)/Z} RN
. kN o
SFONND SO
]
\ -
d 0 0 d | z
R { ‘Y, }O\ {_ R(0) 1} |
> {+-\ + cq \ Cy \ }— CB{ (11-41)
dz( 10} 0 dy | /
) j fA E P 0 2 {
\ o3/ L 2) J \

We note that the last equality is valid because A3 + s P2 =

Applying inductive reasoning to (II-41), we see that the D(z)

0 .

polynomials are built up from the sequence of reflection coefficients
in exactly the same manner as are the prediction error filters, except
that the negatives of the reflection coefficients are used. Since,
if we have the Nth order prediction error filter, we can uniquely
decompose it into its sequence of N reflection coefficients, we can
then build up the corresponding Nth order D(z) polynomial by
using the negative of the reflection coefficient sequence. We also
go from D(z) to A(z) by the identical algorithm.

We will now prove that the extension of the autocorrelation
function given by (II-34) does indeed correspond to the maximum entropy

spectrum by showing that
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N 2
R(0) T (l—lcnl )
n=1

Az) ATz

It

H(z) +H (270 ; (1I-42)
which is a combination of (II-13) and (II-20). The proof again uses
induction and is illustrated by going from N-1 to N .

If we let A(z) and D(z) be the N-1th order polynomials,
then if (II-42) is true for the N-1th order case, we discover that

N-1

R(0) T (1—[cn]2) « 1] £ 1. % -1
n=1 _ R(0) |D(=2) + D (z )|= R(0) D(z)A (z ")+D (z HA(z)
Az) ATz 2 [ A(z) A*(z_lzJ 2 A(z) A (z7H
or
S N P | N1 2
D(z) A'(z ) +D (2 ) Alx) = 2 0 - || . (11-43)
=1
The Nth order case can be written in terms of A(z) , D(z) and
CN as
N * -1 * -1 * -N -
R(0) D(z) - Cx? D (z ™) . D (z ™) - cy 2 D(z) (11-44)
2 N % -1 * 1 * N
A(z) + cx? A (z ) A(z ) + ey 2 A(z)
roy @A GE D +0°GEHa@] - ey @A™ + 0 e Haw@)
2 [A(z) + chNA*(z_l)][A*(z—l)-Fc;z_NA(z)] ’

*
where the numerator terms in N and cy vanish. Using (II-43), this

becomes our desired result of

N 2
RO) I Q- [e |9
N *n—il Pa— * N (T1-45)
[A(z) + cx? A (z DHIA (z ) + cy? A(z)]

Since (II-42) is trivially true for the zeroth order case, our

inductive proof is finished.
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In this section, we have proved the sufficiency condition of the
Fundamental Autocorrelation Matrix Theorem in the case of a positive
definite matrix by actually constructing a power spectrum which agrees
with the autocorrelation values. Furthermore, we have shown that the
infinite extension of the autocorrelation function corresponding to setting
all the rest of the reflection coefficients to zero is generated by
using the prediction error filter in a feedback operation. The fact
that the prediction error filter is minimum phase is necessary and
sufficient for the extension to be stable. Finally, since we have
constructed the maximum entropy spectrum from the autocorrelation lag
values by a straightforward algebraic procedure, all of the general
questions that were raised about the variational derivation can be
answered in the positive.

8. Pure Spectral Line Extensions

Our previous section treated the case when the finite autocorrelation
matrix was positive definite. Here we shall look at the case when the
finite matrix is strictly non-negative definite.

Since we have already seen in section II-B-4 that the extension of
the autocorrelation function is uniquely determined once the matrix
becomes singular, we shall concentrate our attention at the transition
point when the N by N matrix is positive definite but the N+1 by
N+l matrix is singular. When this happens, we have already seen that
]cN[ will be unity and the mean square error, PN » will be equal to
zero. Also, if A(z) 1is the N-1 th order prediction error filter,

N 1

* -
then the N th order filter is A(z) + ¢z A (z ) . Since PN=O .

N

this filter does a perfect job of predicting the next point in the time

series. We shall now show in two ways that this perfect prediction error
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filter is not minimum phase but instead has all of its zeros on the
unit circle.
For the first proof, suppose that we replace Sy by acy where o
is real and slightly less than unity. Then all N roots of
N % -1 . . R
A(z) + acy 2 A (z 7) are outside the unit circle. Next suppose «
* -
is real and slightly greater than unity. Then [achN A (z l)|:>|A(z)l
* -
for ]z| = 1 and since zNA (z l) has all of its N roots inside the
N -1

*
unit circle, so does A(z) + ac,. z A (z

N ) . Thus, as o goes from

slightly less than unity to slightly more than unity, the N roots

go from outside to inside the unit circle. Since the roots of a poly~-

nomial are continuous functions of the coefficients of the polynomial,

we see that when a=1 , all of the roots must lie on the unit circle.
The second proof simply relies on the fact that as z goes around

the unit circle once, the phase of A(z) varies but does not have

any net phase shift. However, at the same time, the phase of

x -
c zN A (z l) makes a total of N complete revolutions. Since

N
N -1

*
]A(z)[ = ,CN z A (z )I » and the phases are continuous functions of

z , there must be at least N places on the unit circle where A(z)

and °x zN A*(z_l) are opposite in phase. Since the prediction error
filter is of order N , these N places are all of the zeros of the filter.
This second proof also shows that the N roots are distinect, i.e., there
are no double or higher order zeros.

Since the mean square error is zero, the output spectrum must be
zero at all frequencies. This means that the input spectrum can be non-

zero only where the power response of the filter is zero, namely at the

N zeros of the filter. Furthermore, there must be power at each of these



N frequencies, since otherwise a shorter prediction error filter

would have been able to do perfect prediction. However, the amount

of power at each of the N frequencies cannot be found from the Nth
order prediction error filter since this filter is the same perfect
predictor independent of how the power is distributed at the N
frequencies. This is curious since the sequence of prediction

error filters up to the Nth depends on the amount of power in the

N delta functions, but the Nth filter is the same for all such
sequences. This, however, agrees with our observation in section II-A-5,

(II-21), that when [c =1 , we cannot generate the N-1lth order

-
filter from the Nth order filter.
One way of finding the power in the delta functions is to realize
that the autocorrelation function must be expressible as
N

R(n) = z
m=1

o~ i2mn fmnAt
m
where the r =~ are positive and the fm are the delta function
frequencies. Knowing R(n) , n=0 to N-1 , allows one to solve for

the r_ . One method is to form the N-lth order filter

N
I (1-a_ z)
m=1 n
3
l—(xn Z
where a = e12wfmAt and do a dot product into the autocorrelation

values. Since this filter has zero response to each delta function
except the nth one, the strength of the nth delta function can be
determined from this dot product. A much deeper study of the properties

of the delta functions is given in Appendix A.



