II-A. SOLUTION OF THE VARIATIONAL FORMULATION
The problem is to find the real positive function P(f) which

maximizes
W
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under the constraint equations
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1. The Functional Form of the Maximum Entropy Spectrum

One approach to solving this problem is to use Lagrange multipliers.
However, since that approach will be used for more general cases later
on, we shall use a different approach here. We begin by explicitly

requiring that P(f) be expressible in terms of a fourier series, i.e.,
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Our constraint equations will be automatically satisfied by
requiring that the R(n) in (II-2) and (II-3) be the same for

-N<n<N . Substituting (II-3) into (II-1), we get
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Taking the partial derivative of (II-4) with respect to R(s) , where

Is] >N , we require that
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If we expand P_l(f) in a fourier series,
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then (II-5) shows that Xh =0 for |n]|>N . Thus, we find that the

functional form of P(f) is given by

P(f) = L . (11-6)
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This is the same equation that would be derived from the Lagrange
multiplier approach, where the A's would be the Lagrange multipliers.

The next step in our solution procedure is to determine values for
the A's din (II-6) such that the constraint equations (II-2) will be
satisfied. We shall do this in two different ways.
The first method will use analytic dintegration around the unit
circle in the complex 2z plane. The other method will use a simple
z~transform argument.

2. The Analytic Integration Derivation

The analytic integration derivation begins by substituting (II-6)

into (II-2) to get the 2N+1 equations,

W eiZﬂant
5 N df = R(@m) , (-N<n<N) . (11-7)
Wor AS e—12ﬂfsAt
s=-N
We now convert to z transform notation by setting =z = e—IZﬂfAt

Then, since
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where the contour integral is

clockwise direction.

df = - i2mAt =z df

equation II-7 becomes
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around the unit circle

Noting that since we are requiring P(f)
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in the counter-

to be

real and positive for |z|=1 , we see from (IT-6) that it must be

possible to write
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where P _»0 and a6 =1 . Furthermore, all of the roots of the first

N 0

polynomial in =z

can be chosen to lie outside the unit circle and thus

all of the roots of the second polynomial will lie inside the unit circle.

Substituting (II-9) into (II-8) gives,

We now form the summations
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Remembering that the denominator polynomial is analytic on and inside
the unit circle, we see that for r >1 , the integrand in (II-11) is
analytic on and inside our contour of integration and thus the integral

is zero. To handle the r=0 case, we note that one form of Cauchy's

integral formula is

L %f("*) iz = £00) ,

where f(z) 1is analytic on and inside the contour of integration, and
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where the contour encloses the origin. Using this formula and remembering

that a0==l , we see that for r=0 , (II-11) is equal to PN . Taking
the complex conjugate of these equations, we have
N
% R(r-n) a = PN for r=0 , and
n=0
N
% R(r-n) a = 0 for r3l1 (1I1-12)
n=0

3. The Z-Transform Derivation

The z-transform derivation of (I1-12) starts by substituting (II-3)

and (II-9) into (II-6) to get
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Using the fact that 2W At = 1 and multiplying through by the maximum

phase factor, we get
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Noting that since the first expression in (II-14) is minimum phase and

is thus analytic on and inside the unit circle, its z transform involves
only non-negative powers of =z . Also since a0=l s, the coefficient of
z0 is PN . Thus, equating coefficients of the first and last expres-
sions in (II-14), and taking complex conjugates, we again derive the

set of equations (II-12).

4. The Prediction Error Filter Equation

Equations (II-12) for O<r <N can be written in matrix form

as
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[R(0)  R(-1) RC-m | (1 P
R(1) R(0) R(1-N) a; 0
- . (I1-15)
-R(N) R(N-1) R(0) J( = 0

Equation (II-15) is the well-known equation for finding the
Nth order prediction error filter and will be discussed in that context

in section II-C. Its solution for P and a

N n* (n=1toN), is

easily accomplished by using a modern version of the Levinson algorithm.
Once the a and PN are found, they are substituted into (I1-13) to
obtain the maximum entropy spectrum. We shall now discuss and derive
the modern version of the Levinson algorithm since it is of central

importance in the study of autocorrelation functions.

5. The Modern Levinson Algorithm

Norman Levinson's algorithm for solving (II-15)was presented in an

appendix to Norbert Wiener's book, Extrapolation, Interpolation and

5
Smoothing of Stationary Time Series. This algorithm takes advantage of

the Toeplitz form of the matrix in (II-15) which contains the autocorrela-—
tion lag values. The number of arithmetical operations required to

solve a general set of N linear simultaneous equations in N unknowns
is on the order of N3 . The Levinson algorithm is on the order of

N2 operations and is thus appreciably faster than the general gaussian
elimination procedure. In additiom, the Levinson algorithm only requires
memory storage on the order of N , compared to an N2 order for the

general case. Another advantage of the Levinson algorithm is that it is
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. , . th . .
recursive. That is, the solution to the N+1 set of equations is

. . th . .
obtained from the solution of the N set of equations., This means

. . th .
that in solving the N order set of equations, all lower order
solutions are obtained and that higher order solutions can be obtained
without wasted effort.

The original Levinson algorithm requires the equivalent of three
vector dot products per recursion. One of these is used to calculate
the value of PN . Since PN may become quite small, the accumulation
of round-off error can make the algorithm numerically unstable (see

6 7
Brouwer, 1971; Pagano, 1972). Fortunately, in 1961 Burg discovered that

P can be obtained directly from P

N by a single accurate operation.

N-1
Thus, the equivalent of only two vector dot products is required per
recursion, speeding up the algorithm by a third as well as improving
the numerical stability. While this discovery was incorporated in the
papers by Robianson and Wigginsfgthey did not explicitly note that the
modern algorithm is different from the one that Levinson derived.
Unfortunately, Brouwer, 1971 and Paganoj 1972 were unaware of this
difference.

In deriving the modern algorithm, we shall assume that the N
by N Toeplitz submatrix is positive definite and that the full
N+1 by N+1 Toeplitz matrix is at least non-negative definite. This
will be true in all practical cases with which we shall be concerned.
Then (II-15) will always have a solution and this solution will be
unique. Thus, if we can find a solution to (II-15) in which the first
element of the left hand column vector is unity and the last N

elements of the right hand column vector are zero, we have found the

one and only solution to (II-15).
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The fact that PN is real is proven by noting that the autocorrela-

tion matrix is hermitian and that premultiplying (II-15) by the row
vector (1, ai s a% s s s a§ ) gives PN . Also, since multiplying
the second column of the autocorrelation matrix by ay and then adding
it to the first column, etc., does not change the determinant of the
matrix, we see that this determinant is equal to PN times the
determinant of the N by N submatrix. Thus PN3>O if the N+l

matrix is positive definite and PN=0 if the N+1 matrix is singular.

Starting with the solution of the set of N equations,

R(0)  R(-1) R(1-N) | [ 1 Py
R(1)  R(O0) R(2-N) by 0
R(N-1) R(N-2) R(0) by 0

the algorithm for solving the set of N+1 equations is most easily

developed by studying the matrix equation

(11-16)
r <y s . .
R(0)  R(-1) ra-n rew | ([ / 0 ‘\ PN_J ,A; \)
R(1)  R(0) R(2-N) R(1-N) b, by_y 0 0

- ‘J teoy »= ""CN« S .
R(N-1) R(N-2) R(0) R(-1) by b, 0 0
RO RO-1) R RO | |0 ll}) NJ kPN_yJ

In looking at this equation, we note that the second column vector

on both sides of (II-16) is the simple complex conjugate reverse
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of the first column. The reason that the equation is valid for these
complex conjugate reverse vectors is that the first and last rows of
the autocorrelation matrix are complex conjugate reverses, the 2nd and
next to last rows are complex conjugate reverses, etc. From inspection,

we see that (II-16) defines AN to be

N-1
AN = Z R(N-n) bn s (1I1-17)
=0
where bO =1 . We now form the Nth order prediction error filter

equation from (II-16) by specifying the value of the Nth reflection

coefficient, Cy to be
°N T T /Py oo
so that
he*egPyq = 0 . (1I-18)

This equation for N will always have a solution since we have assumed
PN—l > 0 . By using this value of N to combine the two column vectors
on both sides of (II-16), we note that the left side column vector starts
with unity and the right side column vector is all zeros below the first
element. Thus, we have indeed formed (II-15) from (II-16).

The Nth order prediction error filter is thus generated from cx
and the N-1 th order filter by

(1 \ /1 f o \
3 b b;—l

< ; = 4 ey . (1I-19)
aN-1 byt bi

kaN J 0 L L
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To obtain the value of PN » the Levinson algorithm multiplied the
Nth order prediction error filter through the top row of the autocor-
relation matrix. However, we see from (II-16) that PN = P + c.. A
or using (II-18),
12

Py = Py (L-cyeg) = P (1-lc]?).  (11-20)

N

I

To initiate this recursive algorithm, we start with P R(0) and the

0

th . . . . .
zZero order prediction error filter, which is simply the one point filter

with unity weight.

One should note that (II-19) is reversible if ICNI # 1 . That

is, given the Nth order prediction error filter, one can obtain dN

and the N-1th order prediction error filter if ay = oy does not

have unit magnitude. To prove this, we note from (II-19) that

*
a = bS + CN bN—s and

Taking the complex conjugate of the second equation, we find in matrix

form that

’ % - 1 ' N §é % . (I1-21)
_s \

This inverse of course exists only if [cNI# 1 . We can note that

(II-21) is valid even when s = N-s .
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6. General Comments

Before concluding this section, a few general comments about the
solution to the maximum entropy variational principle are in order. First,
it is implied that the set of measurements (II-2) are consistent with
some positive function P(f) . 1In the derivation used in this section,
(II-3) explicitly requires that the R(n) , ]n]:fN s be such that some
positive function P(f) exists that satisfies (II-3). We shall show
in the next section that this will be true if and only if the N+1 by
N+1 autocorrelation matrix is positive definite. Secondly, it is assumed
that the constraint equations set a finite upper bound on (II-1). With
no upper bound, there would be no finite solution to setting the partial
derivatives equal to zero. It is clear, however, that constraining the
total power to be R(0) places an upper bound on (II-1) because of the
convexity of the logarithmic function. Third, equations (II-10) and (I1-13)
both assume that the functional form involving the a's is general enough
to satisfy any consistent set of R(n) , n <N . This would not be true
if the two =z polynomials appeared in the numerator. The fact that (11-10)
and (II-13) are general enough is the result of being derived from a vari-
ational principle in which the P(f) solution is constrained to be positive.
Fourth, from the derivation, it is clear that the maximum entropy solution
for any consistent set of constraint equations (II-2) will always exist

and be uniaue.



