I. THE MAXIMUM ENTROPY VARIATIONAL PRINCIPLE FOR SINGLE CHANNEL

POWER SPECTRAL ANALYSIS

In its most elementary and useful form, the maximum entropy
variational principle for estimating the power spectrum of a single
channel, stationary, complex time series can be stated as:

Find the power spectrum, P(f) , that maximizes the value of

W
g fn P(f) df (I-1)
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under the constraint that P(f) satisfies a set of N linear

functional measurement equations
W
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The standard assumptions used in time series analysis are also assumed
here. That is, the time series is sampled at a uniform period of At ,
W= 1/(Q2At)= the Nyquist fold-over frequency and that the power spectrum
of the time series is band-limited to + W . The Gn(f) are the probe
or test functions and the g, are the resulting values of the measure-
ments. It is also implicitly assumed that the constraint equations
(I-2) are sufficient to place an upper bound on (I-1).

The basic assumption involved in maximum entropy spectral analysis
is that the stationary time series being analyzed is the most random
or the least predictable time series that is consistent with the measure-
ments (I-2). In terms of information theory, this statement could be
interpreted to mean that the entropy per sample of the time series is

a maximum. For a given power spectrum, it is easily derived from theorems

in Shannon and Weaver (1959) that the maximum entropy time series is



governed by a gaussian joint probability function and that the entropy

is proportional to the integral of the logarithm of the spectrum. Thus,
the maximum entropy stationary time series is the gaussian time series whose
spectrum maximizes (I-1) under the constraint equations (I-2).

In retrospect, if one considers that we are simply estimating a
spectrum from a few measurements of the second order statistics of a
time series, ome could ask why a probability distribution has entered
into the picture. Actually, there is no need to make a gaussian
assumption to relate (I-1) to the predictability of a time series. In
fact, (I-1) is directly related to the least mean square error in
predicting the next point of a time series by an infinitely long linear
operator. Thus (I-1) has an importance that is completely independent
of information theory and any gaussian assumptions. To stress this
fact, we shall later on use (I-1) to derive the entropy of a gaussian

time series.

The power spectrum of a stationary time series compleféi§igigéifies
the second order statistics of the random process. As an example of the
information contained in the power spectrum, if we filter the time series
with two arbitrary linear, time invariant digitalfiltersudthcnmplexiiequency
responses Hl(f) and Hz(f) to get the two output time series yl(t) and

*
yz(t) » then the average value of yl(t) yz(t) is given by

_— W
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Thus, the power spectrum contains all of the statistical information
about the time series that is needed to find the average product of two
linear, time invariant operations. This is of course the reason that

power spectra are so important in the theory of linear, mean square



error processing of stationary time series. On the other hand, without

making any additional assumptions, the only thing the power spectrum tells

us about the stationary time series is the value of integrals of the form

(I -2) or (I-3). We should note that our linear functional constraint

equations (I-2) belong to the class of measurements as expressed by (I-3).
Although knowledge of the second order statistics alone is

insufficient for determiningthe entropy per sample of the time series,

it does set an upper bound on the entropy per sample. This upper bound

is achieved if the time series is a gaussian process. We shall now

derive the entropy of a gaussian time series, remembering from

Shannon and Weaver (1959) that the entropy of a zero mean gaussian

random variable with variance 02 is %-Qn(Zﬂe 02) .

Consider the situation in which we have received all of the samples up

to XO and we wish to determine how much information we will receive when we

find out the value of Xy - If our time series consists of white gaussian

noise so that each sample is statistically independent of every other

where P

sample, then the entropy of =x_. will be l-Qn(Zﬂe PO), 0

0 2

is the average square value of the zero mean time series. However,

if the time series has a non-white spectrum, then x will be at

0

least partially predictable from the previous samples and its entropy

will be less than % n(2me PO) .

It is known that for a gaussian process, the optimum predictor

is a linear predictor. That is, the best prediction of X from the

- OO
previous samples is of the form L a X - In addition, the error
n=-1
in the predictaion is gaussianly distributed with zero mean. Since the

unpredictable part of x contains the actual new information we will

0



receive when the value of Xq becomes known, the actual entropy of

XO is ~% in(27e Pw), where P is the least mean square error in
4

predicting x from the infinite set of previous samples. It is known

0

and will be proven later in chapter II-C that

-
1 S fn P(f) df = 2n(P_/2W) . (I-4)
-W

Thus, for a gaussian time series, the entropy per sample is given by

W
Zlﬁ g tn(4meWP(f)) df (I-5)
W

and this is the upper bound on the entropy of any time series whose
power spectrum is P(f) .

While (I-5) depends on the gaussian assumption, (I-4) is valid
for any stationary time series. Thus, without making any assumptions
about probability distributions, one can say that any time series whose
power spectrum maximizes (I-1) under the constraints (I-2) has the
largest linear, least mean square prediction error. That is, the

least mean square error in predicting =x by a linear combination

0
of all previous samples is a maximum. In this sense, the time series
will belong to the class of the most unpredictable or random time series
that satisfy the constraint equations. If one now makes the assumption
that the entropy of a time series is a non-decreasing function of its
linear, least mean square prediction error, then maximizing (I-1)

maximizes the entropy. It is easy to generate pairs of time series

which do not obey this assumption. However, on an "everything else



being equal" basis, the larger the mean square error, the larger the

entropy. This assumption is much less stringent than the gaussian
assumption. However, it is completely adequate for determining a
spectrum which maximizes the entropy since it establishes a greater than
or equal hierarchy among all spectra. Thus, if we have two spectra,

Pl(f) and Pz(f) , then if

W W
) i P (F) df > 5 n P (£) df
W -0

then the entropy of Pl(f) is greater than or equal to the entropy of
Pz(f) . Restricting P(f) to the set of spectra that satisfy (I-2),
a maximum entropy spectrum can then be obtained.

Actually, since we are only attempting to estimate the power
spectrum of the time series and our measurements (I-2) contain only
information about the second order statistics, one should perhaps
be satisfied with interpreting (I-1) as maximizing the linear,
least mean square prediction error without extending the interpre-
tation to entropy. An even more pragmatic viewpoint is to say that
maximizing (I-1) is a straightforward variational problem with
constraints. It seems to give good spectral estimates and that
all of the above philosophical considerations do not change a single
number in calculating the spectral estimate. Each point of view

has its merits.



