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Velocity Estimation Recapitulated

by Jon Claerbout

This section is a chapter from my forthcoming book, Fundamentals

of Geophysical Data Processing (McGraw-Hill, 1976). My teaching experience

has enabled me to make a considerable improvement in presentation over
SEP vol. 2, p. 316-320. Of course the definitive work in this area

is Stephen M. Doherty's PhD thesis (SEP vol. 4).
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11 - 3. Velocity Estimation

Previous chapters focused on the task of delineating earth
structure. Mathematically this has meant that we have taken the
material velocity known (and for convenience constant) but the
impedance to have unknown discontinuities at interfaces of unknown
shape between geologic structures. Now we seek to find the material
velocity. Traditionally this has been done by assuming the earth
structure consists of plane horizontal layers. Then the material
velocity is deduced from the offset dependent time shift (called the
normal moveout correction or NMO) which best flattens the events on
the common midpoint gathers. 1In the present chapter it will be shown
how the assumption of flat layers may be eliminated. We will see how
velocity can be estimated even in an earth consisting of random point
scatterers. This can be expected to be useful in fractured zones or
even perhaps in "mo record" areas. An "NR" or "no record" area is
where the best processed section shows no coherence along the midpoint
y coordinate. An area may be NR not only because of poor data quality
but also because the geologic structure itself has no continuity. But,
as we will see, there is no theoretical reason why material velocity
cannot be determined in such an NR area.

Basically the procedure is to downward continue both the theoretical
downgoing wave and the observed upgoing wave. They are projected
back down to the reflectors where their nearly constant ratio should
represent the reflection coefficient as a function of offset. If

they are projected downwards with an incorrect velocity, the ratio
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will be an oscillatory function of offset. The task then is to find
the velocity which gives the best fit of the two waves. It doesn't
matter whether the reflectors have any lateral continuity or not
because the fitting is done for variable offset at a fixed midpoint
at the reflector depth. When reflectors have no lateral continuity
they may be called scatterers. An earth model with randomly

located scatterers would produce migrated seismic data which was a
random function of (moveout corrected) time and midpoint but which

was a constant function of offset.

It is easy to think of a good means to downward continue the
the downgoing waves. From the shot point these waves expand spherically.
For a homogeneous medium we can just write down an analytic solution.
For a moderately inhomogeneous medium we can use the methods of earlier
chapters. One problem is that the approximation szx 0 restricts
validity to angles of about 15° from the vertical. This is easily
improved by transforming from cartesian (x,z) coordinates to polar
(r,0) coordinates. The approximation er;:O requires rays to stay
within 15° of a radius line. Obviously a "stratified media coordinate
frame" could be designed to handle even stronger velocity inhomogeneity
of that type.

The problem which is more difficult is to find a good coordinate
system for the upcoming waves. It took me two years to come up with
a practical solution. A hint is provided by observing why, for the
downgoing wave, the polar system is preferable to the cartesian system.

For a quasi-spherical wave will be nearly zero, whereas QXX

Qee

gets big quickly unless you are directly under the source. Because

we deal with equations like Q , = Q or Q

2 .
t x t Qee/r this means

that Qr will generally be small, whereas Qz is small only on
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the z-axis directly under the source. Consequently the approximation
er::O is much better than sz::O . Our observation is that the
advantage of the (r,6) coordinates is that the downgoing wave

D(r,8) 1is nearly independent of the lateral 6 coordinate. What

we need is a coordinate frame din which the upcoming wave U is
nearly independent of the lateral coordinate. Experienced geophysicists
will immediately recognize that normal moveout corrected data fills
this requirement. Normal moveout (NMO) correction is a compression

of the time axis on far offset seismograms intended to make the far
offset waves arrive at the same (NMO corrected) time as the vertically
incident waves. Thus, the partial derivative of the wave field Q
with respect to shot-geophone offset at a fixed NMO corrected time
should be small.

The closer our data comes to that from flat
horizontal reflectors in an earth of known velocity the smaller the
offset derivative will be. The purpose of a wave equation is to
handle the departure from such an idealized situation.

This compression of the time axes of the far offset seismograms
is really a coordinate change. The usual definition of NMO correction
does not anticipate our desire to project our geophones deeply into the
earth. As we project our geophones downward along a ray path we will

retain the surface midpoint y and the surface half offset h = f/2

as lateral coordinates of the wave field. Lateral derivatives of

idealized data should wvanish.
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Figure 11-14. Geometry for normal moveout correction of

downward continued data.

Figure 14 shows the geometry for normal moveout correction of
downward continued data in homogeneous media of velocity v . The
transformation from interpretation variables to observation variables

is

S(h9 Y d, z ) = y - h (la)
g(h’ VA ds z ) = y + (d—Z)h/d (lb)
£(h, y,d, 2) = (d>+n2)%(2da-2)/ @) (1c)
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Either algebraic or geometric means yield the inverse transformation

d(s, gty 2) = (372 @97 )2+ 4 (22)
y(s, g t, z) = %[ (gts) + — 2z(g—s)2 1/2 ] (2b)
Tt -(g=s) )
_ 1 ' z(g-s) 7
h(s, g, t, z) = J[ (g-s) + ] (2¢)
2 (Pt 2 (g-s) 2y 172

That (2) is indeed inverse to (1) is readily checked by substituting
(1) into (2).

In a homogeneous medium of velocity ¥ we may write the
solution for the downgoing wave as a delta function on an expanding
circle

D(g, s, t, z) = &((g-s)> + 2% - ¥2t2) (3)

The upcoming wave U will be computed in the (h, y, d, z) variables
and we want to compare it to the downgoing wave D , expressed by

(3) in (g, s, t, z) variables. We can convert D to <(h, y, d, z)
variables by substitution of (1) into (3); a meaningful simplification
arises if we assume the medium velocity ¥ equals the moveout

coordinate frame velocity v . We get
D(h, y, d, z) = §6(4d (z-d)) (4)

In this case the downgoing wave turns out to be independent of the
lateral coordinates h and y .

Now let us consider an earth model which contains only a single
point scatterer located at ( XO s z0 ) . This scatterer is illuminated
by a delta function source located at (s,0) . Excluding horizontally
propagating waves we have for the upcoming wave U(s,g,t,z) an

infinitesimal distance above the scatterer
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U(s, g, t, z

~0) =6@ﬂ%)5(§%2—(&x&2—22) (5)

0 0

Substituting the transformation (1) at 2z=d into (5) we obtain

U (h, oy, d, 228) =8 (y=x) §(d° + b’ - (r-hex)? - 22
The existance of G(y—xo) allows us to set y=X, in the other delta

function getting

2 2
t (h, y, d, z=d) = S(y—xo) §(d —zO)
We now see the central concept that the wave at the reflector in

moveout corrected coordinates is indeed independent of the half-offset

h . Obviously the superposition of a random collection of point
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scatterers will create a migrated wave field which is random in ¥y
and d but still constant in the offset h . Indeed the concept
would also seem to be valid even if the scatterers were randomly
distributed out of the plane of the section. In three dimensional
space it is only necessary to regard 2z as the radial distance from
the traverse line.

The purpose of all this is to estimate velocity, but velocity
is needed for the first step, namely the migration. Use of an
erroneous velocity in the migration prevents total collapse to a
delta function on the midpoint axis. This causes some destructive
interference between adjoining midpoints representing some information
loss for a random scatterer model but it is of no consequence in a
layered earth model (where even the migration itself is unnecessary).

Stephen M. Doherty [Ref. 37] made a calculation to illustrate
these concepts. Figure 15 shows an earth model. Figure 16 shows surface
data and downward continued data for the model.

From the point of view of velocity determination, it is immaterial

what coordinate frame is used to downward continue the observed waveforms.

However, it is convenient to downward continue these waves in the NMO
coordinate frame. This proceeds in a fashion similar to our earlier
work. To simplify the algebra, first note that (2b) and (2¢) imply

that

9%  _ _3h _
o(g,t,z) - 9(g,t,z) (6)

The wave equation

~2
( 3gg + azz - att /v- )P = 0 N

in NMO coordinates will take the form



Figure 11-15. An earth model used to illustrate velocity

analysis with downward continued data
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Figure 11-16. Surface data and cownward continued data for the

%: | ’m W I l“

model of Figure 15. The coordinates are designed to display

three dimensional data (y,h,d) on a two dimensional page. The
vertical axis, as usual, is the d coordinate. For the horizontal
axis the h coordinate has been sampled at 6 values of h which
are displayed togéther in groups (common midpoint gathers). There
are 10 of these gathers spaced along the y-axis. Within each
group h=0 1is on the left and hmax , corresponding to about 45°
rays, is on the right. The left frame shows the surface data and
the right frame shows the data down at the reflectors. At the
reflectors we see horizontal alignment of waveforms indicating

that the data is independent of offset h .
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[ (d 9. +y 3 +h 3 )2 +
g d g v g h
2
- 8
+ (az +d, ad ty, ay +h ah ) (&)

2, .2 _
- (g 3ty 3 +h 9" /v 1 =0

As before, when we square these partial differential operators we
will take the coefficients to be constant. This is the high

frequency assumption that the wave field changes more rapidly
than the coordinate frame. Before we compute all the required deriva-

tives we define a simplifying combination b where

52 t2 2 \1/2

b = ( - (g=-s)") (9)

The required derivatives are computed recalling (6) to be

- b F _2 -
dg dz A dt -(g-s)/b 1 ve/b
1 -2.2,3 -2 3
y y y = = 1+zv°t“/b (g-s)/b -(g-s)v tz/b (10)
g z t 2
_2 3
h h h 1+zx72t2/b3 (g=s)/b =(g-s)Vv'tz/b
K 2 t | 5 _

First we quickly discover that if moveout correction velocity v
equals media velocity ¥ , say v=v , then three of the terms in (8)

vanish identically. By direct substitution the reader may verify that

2 2 2 2
( dg + dz - dt [ v ) Qdd = 0 (11a)
2(d y +d vy —dy/vz)Q = 0 (11b)
g°g z7’z t’t dy
2
+ —_ —
2 ( dg hg dz hZ dt ht /v7) th 0 (11e)

Next we obtain the threecross terms with 3
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2y, Qyz = (g-s) /b Qyz = h/d Qyz (12a)
2 h, Q = (g8 /b Q, = h/d Q, (12b)
2 dz de = de (12¢)

From (6) we realize that the coefficients of ny , th , and
2th are identical. Through a considerable amount of algebraic
reduction we obtain

2
)

2 2
Cyg vy, = e /v 0+ a=-( 5 ? (1+n? 1) 6 +3)% g

As usual we make the Fresnel-like approximation by dropping the QZZ
term. In cartesian geometry this limits accurate treatment of rays to
within a cone of about 15 degrees of the vertical. In the NMO geometry
this would seem to be more like a 15° limitation on structural dips.

Of course the higher accuracy techniques can always be used where

required. Gathering (11) to (13) together we obtain the basic result
_ d 2 2,.2 2
( ad + h/d(8y+8h)) azQ (——Zd_z Y*(1+n%/da™) (8y+ah) Q (14)

Equation (14) may be used for downward continuation of moveout corrected
unstacked sections for velocity determination.

It seems worthwhile to inspect (1l4) in some special cases. At
the surface for zero offset Qh vanishes by symmetry. For idealized
data from layered reflectors Q is a function of d only. 1In a wide
variety of practical situations it turns out to be reasonable to

simplify (14) with Qd >> Qy >> Qh . This leaves us with

231
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P S h_
Qy = (g7 ) @+ dz) Ay (15)

It seems natural to wonder about the variable coefficient d / (2d-z)
in comparison to the earlier equations with constant coefficients.
We can now show that with regard to migration that there is no

practical difference. Define a new variable

z' = zd/ (2d-z) (16)

Note that at the surface 2z=0 we have 2z' equal zero and at the

reflectors z=d we have z' = d . Thinking of Q(z,d) = Q'(z',d)

we find

Q = z!93, Q

il

Q = (8,+3z]3,)Q

With these the left side of (15) becomes
- ot '
de = ad 24 8z' ) z, az' Q

In a Fresnel-like approximation we drop az'z' obtaining

2
2d
Q = z'Q, , = ——5 Q,,
dz z ‘dz (2d—z)2 dz
which reduces (15) to
2
=1 h-

To justify the factor of two which was asserted in chapter 11 -2 we

may make another transformation from d to a two way travel time
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coordinate t' given by

t' = 2d/v
which gives

Qi == 7 A+ GEOD e (18)

t'z!'

Of course (18) must be integrated from z'=0 to z'=t'v'/2 . A
convenient rescaling of the depth axis is in terms of two way travel

time t'" where
t" = 2z'/v

This leads to the equation

2
v

- v© 2h (2
Qt't" - - 8 (l + (Vt') ) ny (19)

in which t' is the two way travel time and t" is the two way
travel time depth axis which is integrated from the surface t" = 0
to the reflectors at t" =¢t' .

Strictly speaking (19) should be applied separately to data of
each offset h before data is summed over offset (stacked). For
reasons of economy the data is often stacked before migration with
(19). In such a compromise h in (19) is taken zero or some average
value of 2h/vt' is used.

So far we have shown that downward-continued, moveout-corrected
seismograms will be independent of offset if downward continued with
the correct velocity. What we have not seen is how to estimate the
velocity error from the downward continued data. For this we must
recognize another important term which has been omitted from the entire

analysis. We saw this term in earlier studies of propagation in
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inhomogeneous media. We must carry through the distinction between
media velocity V(x,z) and NMO velocity v (generalizable to

v(z)) which was abandoned for the sake of the simplifications beginning
at (11). Recalling that for small departures from layered models,

Qd >> Qy >> Qh . We see that the first of the three terms in (11)

will be the most important. Making the distinction between the two

velocities equation (lla) now introduces the significant term

(d,"+d,"-4d"/3")q, # 0
52,2 52
(1-"=5)0Qy # 0
722 - (g-s)> 22 7 ~dd
: 52
(1+5)(1-"75)Q, * 0 (21)
d v

Thus, with this new term but the other approximations equation (15)

becomes
2 2 -2
d h h v
20 %yt (P ) (1, @)

ez = " (a2

2
71+
d2

Numerically we can consider solving (22) by a splitting method where

the solution is projected downward by alternate use of the two equations

2
o4 2 h°
h2 52
Q, = (1+75) (1--5)Q (23b)
d v

Equation (23a) may be called the "diffraction' part and (23b)
may be called the "thin-lens" part. The effect of (23b) is that as
Q 1is projected in the z-direction, each seismogram (a seismogram is

a function of (moveout corrected) time d at a fixed half offset h
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and midpoint y ) undergoes a steady time shift ( d shift ). The
amount of the shift increases with the velocity error according to

(1 - 62/%2 ) and it increases with offset according to ( 1 + h2/d2 ).
Thus, the effect of (23b) is to change the curvature of the data with half
offset h . However (23a) contains ny but it does not contain Qh or th .
This means that the operations of (23a) and (23b) commute. Thus, we

can project all the way down to the reflectors with (23a) and then

use (23b). It is significant that the hard part of the job, namely
(23a), depends on the frame velocity v , not the material velocity

Vv . This means that we can rather economically test various media
velocities Vv .

Before we can consider the task of selecting our best estimate of the
media velocity <V, we must consider the matching of the upcoming wave U
to some reflection coefficient ¢ times some downgoing wave D . The
matching of these waves can be done in the field recording coordinates
but we prefer to do the matching in the NMO coordinate system. First
let us get an expression for the downgoing wave in NMO coordinates.

Insert (1) into (3) to obtain

2 2
D(h, y, d, z) = §[ 4d(z-d) + (1 - 5) (@ + 1
v d

v

) (2d-2)2 1 (24)

At present we are not trying to preserve slow magnitude variations
(spherical spreading was omitted from (3)), so we can divide through
the argument of the delta function by - 4d . Since we are interested
in small amounts of variation of ¥ from v the delta function will
vanish very near to z =d . Thus, to a good approximation we can

substitute z for d 1in the coefficient of ( 1 - ﬁz /52 ) obtaining
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62 h2
D(h,y,d,2) = S[d-z-1-T5) @ +75) 7]
v Z 25)
= §(d-z-s)
where we have defined a time (d) shift function
.2 2
2 . %/vy = A h yz

Now let us return to the task ofimatching the up and downgoing
wave. We might hope to determine a reflection coefficient, along
with some angular dependence, in the form of a power series, for

example

c = ¢yt h/z + Cy hz/z2 + ... 27)

To simplify the sequel we will estimate only the constant term o

by the minimization

min [ U(Y, z, h, d) - C(Y3z) D(Y9 z, h, d) ]2 (28)

Z z
c h d

The solution is obviously

c(y,z) = (29)

fom 2 o R e S

Because D vanishes almost everywhere we can gain insight by replacing

the double sum by a single sum, specifically for the numerator

Numerator U(y, 2z, h,d) §(d-z-5s)

I I
h d

L Uly, z, h, d=z+s(h’, z, 9/%) | (30)
h

Letting N denote the number of terms in the offset sum, we get for

(29)

c(y,z,v) = % U (31D)
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Finally, we come to the part of determining the velocity ¥
which provides the best minimum of U - ¢D . For this a computer scan

over V may be used to find the minimum

min r z (U - cD)2
T h d
= min L (U -=¢c )2
¥ h
N N
= min Z(U~%ZU)2
v h h
= min (z UY) - L (zur? > o (32)
v h N -

In practice it is found that rather than minimize the sum squared minus
the squared sum it is preferable to maximize the negative logarithm or

the semblance ratio

2
Semblance = —i—zll%~— <1 (33)
v NZU

The ratio has the advantage of being insensitive to the magnitude of the

wave U and lends itself well to displays over a wide range of conditions.



