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SEPARATION OF THE FORWARD AND BACKWARD SOLUTIONS OF
THE ONE-DIMENSIONAL WAVE EQUATION
R.S. Anderssen, Computer Centre

Australian National University
Canberra, Australia

ABSTRACT

A number of authors (see, for example, Corones [1] and Sluijter
[2]) have discussed the significance of the decomposition of the solution
of the wave equation into forward and backwards (up and down) wave
solutions. 1In particular, in the context of numerical holography,
Claerbout and co-workers have shown that the actual numerical separation
is an essential requirement, and have used wave equation migration for
this purpose (see, for example, Claerbout [3]). The possibility of
using variational methods as a basis for the separation does not appear
to have been investigated. 1In this report, we show that certain variational
formulations for the wave equation can be used to separate computationally
these two basic types of solutions. The actual separation depends
heavily on the choice of coordinate functions for the variational

solution.
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1. INTRODUCTION AND PRELIMINARIES

In this report, we consider the problem of separating numerically,
through the use of variational methods, the forward and backward solu-

tions of the one-dimensional wave equation.

Bzu 32
S 5 75 u = U.(X,t), OEXi,Q, O<t<°°$ (1)

u
sz Btz
along with the initial conditions

wx0 = £, BEO ey gcx<n, 2)

and the boundary conditions

u(0,t) = u(®,t) =0, 0 < t<o , (3)

where, for notational simplicity, we have taken the velocity ¢ = 1.

It is well known that independent variational formulations can
exist for the solution of the same problem. In the case of the wave
equation formulation given above, three such variational formulations
are:

1. Hamilton's Principle. Let KT denote the set of functions

which satisfy (3) as well as
u(x,0) = f(x) , u(x,T) = up(x) , xeR,

where uT(x) is prescribed. Hamilton's Principle asserts that, if

ueKT, then

T %
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if and only if u satisfies (1), (2) and (3) on [0,2] x [0,»], where

8§{F} denotes the first variation of the functional F.

2. The Petrov-Galerkin Principle (See Yaskova and Yakovlev [4]).

Let K denote the set of functions which satisfy (2) and (3).

Then,
for a suitable set of functions n(x,t) in K,
R 3%y 92
('(~——— - ——E-)n(x,t) dx dt = 0, (5)
P 2
J X 3t
0 0

if and only if u satisfied (1), (2) and (3).

3. The Gurtin Formulations. (See Gurtin [51).

Let K denote

the set of functions which satisfy the boundary conditions (3).

For
each te(0,») define the functional
A = | [ure+or 22 4o pxy] (xt)dx (6)
t ) 9x 9x ?
R
where
G(x,t) = t,
F(th) = -f(X) - tg(x), (7)
.t

ukvy = 5 u(x,t-1) v(x,t)dT.
0

Then, for _uek,
§a (u) =0 (0 <t <),

if and only if u 1is a solution of the wave

(3).

equation (1), (2) and



126

It is clear that Hamilton's Principle is not applicable, since it
presupposes a knowledge of the function u at a later time T - some-
thing which is unknown in advance. The Petrov-Galerkin principle
circumvents this difficulty through the additional flexibility contained
in the choice of the n(x,t) functions and it will be this wvariational
formulation which we shall examine in this report.

In Section 2,we show how to construct a variational solution of
(1), (2) and (3) via the Petrov-Galerkin formulation. Then, in Section
3, a procedure based on this is used to separate out the forward and
backward components.

For clarity, we examine the formulation (1), (2) and (3) which
describes the motion of a plucked string in which g(x) = 0. 1In this
case, the exact solution is sknown (see, Lanczos [6], Section 8.7)

as a Fourier series solution:

-z km o X7
u(x,t) = k=1 CR cos o= t sin & x
- 10z i kT in 5T (xo
> k=1 CR [sin 2 (x+t) + sin 2 (x-t)] (8)
1
= E—[f(x+t) + f(x-t)} ,
where
A
- 2 in KT
Ck = 7 S f( €) sin T € de
0

The forward and backward wave motions which make up the solution are

clearly discernible in the above representations of the exact solutions.
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2, Direct Variational Solution

The approximate minimization of a functional F(u) or the approximate
solution of the Petrov-Galerkin equations can be performed as a two stage
procedure:

STAGE 1. Choose a system of coordinate (trial) functions {¢k(x,t)}
which satisfy the following conditions:

(i) The system {¢k(x,t)} is complete in some appropriate Hilbert
space such as the space of square summable functions defined on [0,2] x
[0,e].

(ii) Each member of the system {¢k(x,t)} satisfies the homogeneous
boundary conditions (3).

(iii) For arbitrary finite n, the set ¢1(x,t), ¢2(x,t), -
¢n(x,t) is linearly independent.

STAGE 2. Using the following approximations for the soultion u,
viz.

n
un kg]_ ak Cbk(X,t) > k = ]., 2, —————— , (10)

. n
determine the unknowns aé )

s0 as to either minimize F(un), or solve
the Petrov-Galerkin equations with respect to an appropriate choice
for the n(x,t); for example, n(x,t) = ¢k(x,t) , k=1,2, —— .

The first condition of STAGE 1 ensures that approximations of the
form (10) can approximate the desired solution arbitrarily closely. The
second ensures that all approximations satisfy the boundary conditions,
while the third is required to ensure that the resulting system of linear
equations which determine the aén) (k=1,2,---,n) are non-singular

Thus, the nature of the approximations will depend heavily on the
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choice of the {¢i} , and the n(x,t) in the case of the Petrov-
Galerkin equations. For example, Mikhlin [7] has shown that the choice
of a strongly minimal system for the {¢k(x,t)} is a necessary and
sufficient condition for the stable computational implementation of the
above direct procedure. Below, we shall show that the separation of
the solution of the wave equation (1), (2) and (3) with g(x) = 0 dinto
forward and backward components can be achieved through an appropriate
choice of the ¢i(x,t) and the n(x,t)

Here we show how the Petrov-Galerkin equations can be used to obtain
the Fourier series solution of (1), (2) and (3) with g(x) = 0 .

Initially, we integrate (5) by parts twice to obtain

T

2 p
3°n, _ \ du _ 9n , x=4
(u, 2 R N U gk dx=0 df
0
) T
- 9ny _ (pouw _ 3n =T
= (u 8tz) _S[Bt nmuge b 9
0

Assuming that the n(x,t) satisfy the same boundary conditions as the
¢i(x,t) , and using the fact that g(x) = 0 , the Petrov-Galerkin

equations become

2 2 - = ‘
(u,.é)____n__ _Q__Tl) = S[u-a—r—]—‘t_de—j[ﬂl—n] dx (1D
2 2 . t=0
X ot 0

Choosing the coordinate functions {¢k(x,t)} to have the form

Kl ein ¥ x , k=1, 2, 3, ..., (12)

¢k(x,t) = cos ) )

and the n(x,t) as the sequence
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jm Jur

n(x,t) = sin % t sin - % i=1, 2, 3, ——, (13)
we obtain that:
L T
32ﬂ (n) kw kT jm
(a) (u,——E-) = k 1% &y.[(Jﬂ/Q) cos — - t sin T X sin 7t
0%
0
m 82
sin 4% xdxdt = (u, ——D-)
2 2
ot
A dn t= ’ du L ju jm
(b) ) [u 5;’]t=0 - 'S[ FYSRL ]t=T = - J f(x) (—ED sin ~E>xdx
0 0 0
- 2
+ I a(n) j (-11 ) cos kn T sin l—clx cos lﬂ-t sin 4% xdx
k £ 2 2 2 L
k=1
0
n (n) m km km m am -
+ E -S( sin 2 T sin 3 X sin 2 t sin 2 x dx =
2
s . .
- am . dm . 2 3m 2 jm (n)  jm
j f(x) ( 2 ) sin 7 X dx + (sin ) T + cos 2 T) a j ( =) 2
0
2
=2 ir 2 L _ ()
> ( 2 )y { I f f(x) sin . X dx aj } .
0

Combining (a) and (b), we obtain that the approximate solution

of the Petrov~Galerkin equations is

n
_ (n) km . km
u = kél a, cos ) t sin T X (14)
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where

2
aén) = ‘%‘Y f(x) sin %ﬂ‘xdx = Ck (15)

0

which tends in the limit to the Fourier series solution (8).

3. Separation of the Forward and Backward Components

We now show there exists a choice for coordinate functions {¢k(x,t)}
and the n(x,t) which allows the separation of the solution of the wave

equation into forward and backward components. In fact, let
. kW
¢k(x9t) = sin _—i (Xi-t) (k = ]-3 2, 33 - ) s (16)
and
jm .
ﬂ(X,t) = cos T (Xj—t) (J = ]-s 2, 3’ - ) . (17)

Then, we obtain that:

£ T
2 -~ .
(a) (u,‘—z—)—D )y = - ; a(n) S’ J sin %; (x+t)(jTT/Q')2 cos %i (x+t)dxdt
o’ k1 K - -
0 0
82n
= (u, °—_2) (J = l’ 29 T n)
ot
R L 2
(b) 3 (o o2 1507 ax - S [ nl_,dx =+ ¢ 5 £(x) (Gn/ 2)
0 0 0
. n (n) 2 K ‘ o
sin<%f xdx - kElak j { sin ET'(XTT)(jW/Q)Sin‘lz (x+T)

0
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+ (kw/%) cos %E (xtt) cos %E-(xft) cos %E (XjT)} dx

2
= + ;ﬂ-{ f(x) sin lﬂ-x dx - Qagn) }
- £ L i
0
Combining (a) and (b) according to (11), we now obtain as the
approximate solution of the Petrov-Galerkin equations

n . km
L ¢, sin g (x+t) , (18)

where the € are defined above in (9), which tends in the limit to the
Fourier series solution for the forward and backward solutions of the

plucked string problem given in (8).

If we replace the n(x,t) of (17) by
. gm .
n(X,t) = slin 2— (Xtt) s 1= l’ 23 39 TTT (19)

then we obtain on working through the above steps that
2

j f(x) cos %E-x dx = 0 (20)

0
which implies that the coefficients of the Fourier cosine series of
f(z) are all zero, and hence, that f(x+t) must be treated as an odd
periodic function outside the interval [0,%£]. This is consistent with
the known structure of the forward and backward components of the solution
of the wave equation (see, for example, Lanczos [6], Problem 310).

Finally, we note that,if we replace the n(x,t) of (17) and (19) by

n(x,t) = cos %ﬂ (x;t) , sin %E (x+t) , ji=1, 2, 3, ——

we obtain the result that the wave equation (1), (2) and (3) with
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g(x) = 0 is only solvable, if f(x) = 0. This implies that, with respect
to the energy norm
2 _ azu azu
HUH* = 2 2 , W),
X ot

the forward and backward components are orthoganal.
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