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Preliminary Results on Synthesis and Migration
of Transmission-Distorted Vertically-Stacked Sections

Philip S. Schultz

The following figures show the results of applying the concepts
and formulas given in the preceding section on the treatment of trans-
mission distortions to a synthetic earth model. In particular,
equation (22) was used to generate the inversion (figures 6 through
10). The "surface data" (Figure 2) was generated by arelation derivable
from equation (19).

Generation of the surface data from the reflection coefficient
series is expressed (in the notation of the previous article) as
obtaining U(zo) from c¢'(x,t) (recall c'(x,t) = c(x,t) % w(t))

So we have from before,

U(zy)) = clx,£) * I(zp) *, w(t) (19)

c'(x,t) *t I(ZZ)

We now convert U(zz) and I(ZZ) to U(zo) and I(zo) by means

of equations (13) in the previous article,

2 2
— 1]
1M U(zO) = c¢'(x,t) *t 1 M+ I(zo) (19a)
0 0
and recalling equations (14),
0 2
= ! %
U(zo) ; M, [ ¢'"(x,t) . é M+ I(zo) ] (19b)

We therefore have a method of generating transmission-distorted surface
data, 'U(ZO) , from the reflection coefficients, c¢'(x,t) . Recall

that I(zo) is trivially a delta-function plane wavefront. The
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equations above and those in the previous section imply a single reflecting
horizon at zy - As was stated in the closing remarks of the previous
section, generalization to many reflectors offers no conceptual diffi-
culty, but leads to overly cumbersome notation.

The synthetics in this section were generated such that there are
two subsurface reflectors of a graben-like geometry. The geometry
was made to be similar to the model of Don C. Riley in the March 1974
SEP report (pp. 127 ff.) so that the contrast would be apparent
between the two wave propagation effects.

Two potentially confusing aspects of the synthetics should be
clarified. First, the entire seismic section is meant to encompass a
full 2.34 seconds of data. The dominant wavelength is about nine
data points, and since we assume a sampling interval of .004 seconds
and the time domain only contains 200 data points, logical inconsis-
tencies appear to abound. The obvious reason we decided to encompass
2.34 seconds of data in 200 data points is that the full 600 points
needed would have involved needlessly long computation. The proper
interpretation of the display is that the sampling interval is .004
seconds, the dominant frequency is about 28 Hz, and the reflectors are
at depths in proper proportion to their position in the time scale.
The migration was done with 13 Az steps at a = .064 . With an
average velocity of 8000 ft/sec, and a receiver spacing of 100 ft, the
vertically-stacked section should represent a depth of 2.34 seconds.

The second point of confusion is the upper "chirp"

horizon,
representing the sea floor. While it shows the proper form of the

sea floor topography, it is not a representation of the reflected



wave , rather of the transmitted wave but displayed at the position of
the expected arrival of the reflected wave.

Notice that the wavefront relief of the sea floor transmission
is about A/2 . This, coupled with the dominant frequency of 28 Hz
implies a somewhat less absolute transmission shift than the one
wavelength (40 Hz) shift discussed in "Modeling Diffractions of
the Transmitted Wave'. Figure 2 in that discussion is pertinent here,
but the topographic relief inferred from the figure is greater than

needed to produce the shift used here.
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A Fast and Accurate Shifting Scheme

by Philip S. Schultz

Many situations require that a seismic trace be uniformly shifted
up or down by a non-integral number of sample intervals. The most well-
known example is in statics corrections, indeed, our treatment of migra-
tion in situations where the transmitted wave itself suffers diffractions
also requires this type of shifting. We have looked at this problem
with the suspicion that in some cases it might be desirable to
differentially shift the wave field at each migration iteration (i.e.,
Az step). One is then faced with the possibility of executing a
shifting routine 50 or 100 times or more before migration is completed.
(This subject is treated in detail in the sections of this report
on transmission diffractions.) At this point we would like to be
sure that the shifting routine used does not hopelessly distort
the wave field after so many shifts.

Previously, we have used a simple two-point linear interpolator
for all our shifting. It has the advantage of requiring only two
MADS (multiply and adds) per point. But as we shall see, it can be
substantially improved at the nominal cost of an extra MAD at each
point.

To begin, let us examine the properties of a two-point
operator interpolating a midpoint. Given a time series ( fl , f2 )

the midpoint, fl 5 » can be obtained by

_ 1 1
s =28 + 355, 1)



i.e., convolution of the filter (0.5, 0.5) onto the time trace. This
filter clearly has a d.c. response of unity. Figure 1 shows why it
would be desirable to normalize this filter to a d.c. response of
something somewhat larger than unity. In our case we have used 1.005.
For midpoint interpolation the filter is zero phase and the distortion
is described entirely in the Fourier amplitude. From the figure we
see that a 17 amplitude attenuation occurs at 17 points per wavelength.
This is a fairly dense sampling and is representative of only the very
low end of the spectrum. Admittedly, we have taken the very worst
case of two-point interpolation: the midpoint.

We would now like to design a filter to first very accurately
interpolate the midpoint, and then use our two-point interpolator on
the now more densely sampled data (an idea given me by John P. Burg).
In this way, for example, we will effectively create a 16 point per
wavelength sampling out of what was formerly 8 points per wavelength.
The ultimate use of our two-point interpolator will then be accurate
to within 1% for 17/2 or 8.5 points per wavelength.

We choose to interpolate midpoints with the zero phase filter
(a, b, b, a) . We have chosen a and b so that the filter will be
normalized to a d.c. response of unity and have its Fourier amplitude
have minimal (approximately) deviation from unity out to 8
points per wavelength. (As noted in the caption to Figure 2, a slight
amplification was acceptable since the two-point filter has a strong
tendency to attenuate.) With the above criteria, we created thefilter
(-0.0682, 0.568, 0.568, -0.0682), described in Figure 2. So, for the

time series ( fl, f2, f3, f4 ), we have

80



f2.5 = (—0.0682)fl + (0.568)f2 + (0.568)f3 + (—O.O682)f4 (2a)

or

f2.5 = afl+bf2+bf3+af4 . (2b)

Aiming at combining the four-point and two-point filters, we note

f2+At = A(l~-At)f2 + A At f3 (3)

with the two-point filter, where A is the d.c. normalization.

, 1 .
But now if 0 < At < 5 » We can write

f2+At = 2A (O.5-—At)f2 + 2A At f2.5 4)

But we have a linear expression for f2 5 from equations (2).

Combining (2) and (4) yields

f2+At = [2A aAt]fl +[2A(0.5-At)+ 2A bAt]f2 +
+ [2AbAt]f3 + [2AaAt]f4 (5)
or
f2+At = [2A.aAt](fl + fa) +{2A(0.5 - At)+ 2AI)At]f2
+[2abAt]f, . (6)
And a similar expression can be written for -% <At < 1.

Now we have said that we are interested in shifting the entire
trace uniformly. That means At 1is a constant. We have already

decided on what permanent values to assign to A, a, b . Therefore,

the operation given in equation (6) involves only three MADS per point.

This should involve an increase in computation time by a factor of

1.5, a modest price.
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Two examples of multiple shifting are given in Figures 3 through
6 where comparisons are made between the two-point shifter and the
shifter using equation (6). Execution times are given in the second
example, and as expected, a factor of about 1.5 is realized.

A subroutine, SHIFT4, is attached which shifts a wave field (or
seismic section). An array SH(NX) is input which gives the shift

for each of NX traces.
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Figure 1. The Fourier amplitude of a simple linear midpoint interpolator
normalized to a d.c. response of 1.005, i.e., (0.5025, 0.5025). The curve
is a segment of a cosine function which would reach zero at 2 points per
wavelength (as expected). At this particular normalization a 1% amplitude
attenuation is reached at 17 points per wavelength (this could be extended
byrenormalization if further d.c. amplification were acceptable).

Midpoint interpolation is the most inaccurate in simple two-point linear

interpolation since the interpolated point is not close to either data point,
and it can be seen here that at as many as 8 points per wavelength almost

7% of the amplitude is lost for each interpolation.
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The Fourier amplitude of the four-point midpoint interpolator

(-0.0682, 0.568, 0.568, -0.0682). This interpolator, after normalization

to a d.c. response of unity, and after recognizing its symmetrical (zero

phase) character, allows one degree of freedom in its design. This was

chosen so that a sampling of 8 or more points per wavelength would result

in an amplitude distortion of no more than approximately 0.27%.

a slight amplification was preferred to a slight attenuation because the

In addition,
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eventual two-point variable interpolator has a greater tendency to attenuate.
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Figure 3. Example showing the comparison of a two-point interpolator with the
algorithm, SHIFT4, described in the text. The original waveforms are shown
as solid lines, while the actual data points are plotted for the resultant
waveforms (after twenty consecutive shifts). Note that SHIFT4 gives consis-
tently less diffusion and attenuation, and also tends to give more uniform
results over the range of shifts depicted. The example of a square wave-
form is deliberately severe in that it contains much energy in low and high

frequencies. The real strength of the SHIFT4 routine is in the 8 to 20 points/
wavelength range.
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SUBROUTINE SHIFT4(WAVE,NXyNT, SH)

C—-=-====4 PDINT FILTER {-C.068240.568,0.568,~0.0682) FIRST TO
R INTERPOLATE MIDPOINT; FOLLOWED BY LINEAR
C-----—-INTERPOLATION. HAS <=1.0% ERROR FOR FREQUENCIES WITH
C-======AT LEAST 9 POINTS/WAVELENGTH.
DIMENSION WAVE(NX,NT) ,SHINX) ,BUFF(4)
Cmmmmmmm SH{X) IS THE SHIFT (PGSITIVE DCWN) IN DATA POINTS
R (& FRACTIONS THEREOF) AS A FCN OF X-COORDINATE.
c
NTM1=NT=-1
NTM2=NT-2
00 100 IX=1,NX
c
C-------PROVICE FOR SH>1
ISH=ATNT(SH( IX) )
c IF(ISH.EQ.0)GD TO €6
(-——----D0 SHIFTS OF MULTIPLES CF THE SAMPLE INTERVAL FIRST
DO 87 IT=1,NT
IARG=NT+1-1 T-ISH
[F(ISH.LT.0) IARG=IT-ISH
IF((IARG.LT.1).0R.(IARG.GT.NT)) GC TO 89
WAVE(IX, IARG+ISH)=hAVE( IX,1ARG)
GO TO €1
85 WAVE(IX, [ARG+ISH)=0.0
87 CCNTINUE
86 CONTINUE
C
Cmmmmmmm 0O FRACTIONS CF SAMPLE INTERVAL
FSHESH{IX)=AINT(SH{IX))
DEL X= AB S{FSH)
IF(FSH.EQ+0.) GO Ta 100
IFIFSH.LT «=0.5) GO TO T4
[F({FSH.GE«-0.5)AND. (FSH.LT.0.)) GO TO 73
IF((FSHeGT «0.) o ANC+ (FSHoLT.0.5)) GO TO 72
c IF FSH >= 0.5 CONTINUE
C--———--FILTER COEFFICIENTS

Al4=1,CC5%(-0,0682)%2,0*(1.0-CELX)
A2=1.005% (2. 0*%{ DELX-0.5)+0.568%2.C*(1.0-DELX))
A3=1,005%0,568%2,0*(1.0-DELX)
GC 10 70

72 CCONTIMUE
Al4=1,005*%(-0.0682)#%2.,0%DEL X
A2=1.005%0.568%2.0%DELX
A3=1,005%(2.0%{ 0.5-DELX)+0.568%2,0%CELX )
GC 10 70

73 CONTIMUE
Al4=1.0C5%(-0.0682)42.0%DEL X
A2=1.005%{{1.0-2.0%DELX)+0.568%2 ,C*DEL X)
A3=1.0C5%0.568%2, 0*DELX
GO 10 70

T4 CONTINUE
Al4=1.005%(-C.0682)%2.0*(1.0-DELX)
A2=1,005%0, 568% 2+ C*{1 .0-DELX)
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17

78

19

99

S7

96

98

100

89

A2=1.005% (2, 0#(CELX-C.5)40.%568*%2,C*(1.0-DELX))

CCNTINUE

IF{FSK.LE.O.) GO TCQ SGS

OC 77 I=1,3

BUFFL{T)I=WAVELIXyNT-3+1])

WAVE(IX NT)=A143BUFF (1) +A2%BUFF(2)+A3*BUFF(3)

DC 79 IT=3,NTM]

CC 78 1IB=1,3

BLFF{5-IB)=BLFF(4-18B)

ELFF{L)=WAVELIXyNT=-1IT)

WAVELIX ,NT+Z2-IT)=A14*{(BUFF{ 1)4BUFF(4) )+A2*EUFF(2)
+A3*BUFF(3)

CCNTANLUE

WAVEL IX,2)=AZ#BUFF (1) +A3XBLFF(2)+A14%BUFF(3)

WAVELIXs1)=A3%BUFF(1)4A14*BUFF(2)

¢C 70 100

CCNTINUE

DC 97 I=2,4

BUFF(I)=WAVE(IX,I-1)
WAVECIXyL)=AZABUFF(Z)+A3%BUFF(3)+A14*BUFF(4)

CC 98 IT=2,NTM2

CC G¢ IBR=1,2

BLFFUIB)I=BUFF(IEB+]1)

BUFF{4)=WAVE(IX,1T+42)
WAVECIX,IT)=2144(BUFFIL)+BUFF(4))+A2FBUFF{ 2)+A3%BUFF(3)
WAVECIXyNTM1)=A14%BUFF(2) +A2*BUFF (3 )+A3%BUFF(4)
WAVECIXyNT)=L14%BUFF(Z) +AZ*BUFF( 4)

CONTINUE

RETURN

END



