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Slant Frames in Layered Media
by Raul Estevez
1. Introduction

The integral transformations and integration techniques developed
in my last two papers on stratified media, give the clue for getting an
equation for slant frames in stratified media. The problem was already
discussed by Claerbout in his paper "Shifting Frames" (April 16), but
some questions still remained open due to the presence in the proposed
transformation of integrals in relation to travel time. This would
imply the knowledge of velocity and other parameters (angles) as functions
of travel time instead of depth.

At this point, I would like to call attention to the fact that we
already know how to express travel time t as a function of the ray
parameter p and the depth z (first paper in layered media):

VA
£(p,2) =& s 1= v 1 aw (1-1)
0

This eventually could allow us to transform the unwanted integrals in
travel time into integrals in relation to depth. Thus, for example, in
the original transformation proposed by Claerbout ("Shifting Frames'"):

t
x' = x-—S v(t) sinb(t) dt , (1-2)
‘o
using (1-1) and the fact that sinf = pv , we could reexpress this integral
in the following way:
(1-3)
t z z
S v(t) sindb(t) dt =S v(w) sin8(w) % dw = p S v(w)[l-—(pv(w))z]_l/zdw .
t z z

0 0 0
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But, as we will show later in this paper, this last transformation can
be interpreted as a generalization of the more simple one (for a

velocity constant medium):

X = X - z tanb , (1-4)
rather than as a generalization of the original slant frame transformation:

x' = x - vt sin® . (1-5)

As we shall see, this fact will imply an equation that differs from the
one obtained by Claerbout in his paper.

We encountered a similar situation when considering the h-frame in
stratified media and saw how this problem could be solved if in the
definition of our transformations we avoid having to express the new
transformed variables as functions of travel time. Fortunately, it's
our experience that most of the already defined transformations,
especially those of the slant-frame type, are non-unique, and almost
always we can find different transformations (mathematically) that will
do approximately the same job. So, hopefully this non-uniqueness may
help us to find other sets of transformations mathematically more
suitable to our particular requirements. These different types of
transformations can be obtained either starting from some mainly physical
requirements and assumptions or following a more rigorous mathematical
approach. 1In order to understand better how this can be done as well
as the genesis itself of many of the transformations we have been using
and might use in the future, I feel it would be of interest to review

very briefly both procedures.
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2. The two approaches to defining transformations

The physical approach

Let's start our discussion with what I call the physical approach,
by reviewing once more the two basic physical ideas behind these
transformations.

1 - If we regard the wave equation as a physical operator that
translates and diffracts energy in time and space, what we want is a
transformation that keeps only the diffraction part of this operator.
This means that we want a moving frame that incorporates in itself
the simple translation of the energy in space and produces a new
equation where only diffraction is left. At this point we may want to
express the diffraction as a function of the travel time or of the depth.
As we learned from the Claerbout-Johnson transformation, the first case

implies a transformation where the new x' and z' remain still and

time flows, while the second case implies a transformation where x'
and t' are frozen and z flows. For obvious reasons, the second
possibility is preferred.

2 - We want a transformation that allows us to get separate equa-
tions for downgoing and upcoming waves respectively.

Usually this second condition is fulfilled in two steps: a) by
defining two different frames, moving in opposite directions in corres-
pondence with the two types of waves and b) by dropping some terms in
the transformed wave equation.

The non-uniqueness of the transformation is rather a consequence of
the first condition. As we may notice from Figure 1, for a wave propaga-

'

ting at a fixed direction 6 , we could define x and t' din many

different ways and still satisfy this condition.
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FIGURE 1.
For example, we could make x' = x - vt sin6 , or x' = x - ztan® ,
or x' = x 00326 - z sinb cos® , etc., and all these transformations

would make x' remain still in the new frame. In the same way we could

define t' through several linear combinations of x , z and t in
such a way that t' was also frozen. For example, t' = t - (x sinf)/v -
(z cosb)/v , t' =t - x cosecd /2v - zsec6 /2v etc., will do the job.
Among this class of transformations, which one should we use? At
least three extra criteria could be pointed out:

1l - We want a transformed equation numerically computable and as
simple as possible. In particular, we would like several coefficients

of the new equation, such as Q and Qx't' to vanish.

t't!
2 - We want the best possible approximation, after neglecting some

terms of the new equation (such as Qz,z, ). This approximation could

be thought of in terms of how well the approximated equation fits the

exact solution (circle) in the dispersion plane kz . kX (see "Dispersion

relationship for the slant frames ... 3/12/74).
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3 - Finally we may want transformations or equations suitable for
the particular problems we want to solve. For example, in our case
(layered media) we do not want new space variables to be expressed, if
possible, as functions of the travel time.

A better illustration of these last three criteria will be found

immediately, through the discussion of the mathematical approach.

The mathematical approach

According to this approach, the basic idea is to start by expressing

the new coordinates x' , z' , t' through a generalized transformation

of the old ones x , z , t :

x' = fl(x,z,t)
z!' = fz(x,z,t) (2-1)
t' = f3(x,z,t)
The most simple case to be considered is the case when x' , z'
and t' are just linear combinations of x , z and t . Further,

we would transform the wave equation with these still unknown functions
and try to give a mathematical form to all the conditions previously
stated ( Qt't' =0, Qx't' = 0 , fit to the circle, etc.). These
last mathematical conditions would act as additional constraint equations
for the generalized functions in the transformation and, hopefully, would
allow us to define them. This was, more or less, the technique used by
Claerbout in his paper on "shifting frames".

Since we are less familiar with this approach, I will try to illustrate
it in more detail through a very simple example that we might as well

use later when considering stratified media. According to what was said
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before, for the particular problem we are considering in this paper, we

need transformations where x' and z' are not functions of t . In

this case one of the simplest ways to write (2-1) would be:

x'"(x,z) = a(®)x + b(0)z (2-~2a)
z"(x,z) = c(08)x + d(8)z (2-2b)
t'(x,z,t) = e(8)x + £(8)z + t . (2-2¢)

the Jacobian of this transformation being:

x'x 2.t = @ b, O (2-3a)
z'X 2.t = ¢, d, O (2-3b)
t'X 2t = 8 £, 1 (2-3¢)

If now we transform the wave equation:

1 -
(8  +3,, - 2 3., )P =0 (2-4)

according to (2-2), we obtain in the new coordinate system the following

equation:
2 2 2 2 2 2 2
(a"+b )QX,X,+(C +d )Qz,z,+(e +f°-1/v )Qt,t,+2(ac+bd)QX,z, +
+ 2(ae+bf)Qx,t, +2(ce+df)Qz,t, =0 . (2-5)

Further, we would like the coefficients of Qt't' . Qx'z' and
Qx't' to vanish. This condition will give us the first three constraint

equations:
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e + f = ;%' (2-6a)
v

ac + bd = O (2-6b)

ae + bf = 0 (2-6¢)

After neglecting, as usual, the Qz'z' term, we are left with the

X X z't

The next requirement that we must satisfy in order to separate
both down and upcoming waves is that, after transforming this approximate
equation back to the original coordinate system x, z, t , the coefficient
of PzZ must vanish (this would give us a single defined function in the
dispersion plane kx, kz ). To do that let us notice that the inverse

transformation to (2-2) is:

x = -3x 4l (2-8a)
Y Y
s = Syt & 0 (2-8b)
Y Y
£ = de —cf _, 4 af - be 2+t (2-8¢)
Y Y
with its Jacobian being
- d4d.b -
x',z',t" = Y’y 0 (2-9a)
= c&._2a., -
va’zl’tv vy} 0 (2-9b)
_ de-cf  af -be |
tx',z',t' = Y 5 Y ;1 (2-9¢)

where

Yy = bec - ad . (2-10)
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A simple algebra shows then that the coefficient of Pzz comes

2,2 2 2 _ . -

out to be c¢"(@”"+b") /vy~ . As we see, requiring this coefficient to

be zero is equivalent to assuming that c¢=0 . But this result is

compatible with equations (2-6b) and (2-6c) only in the trivial case of

b and e also being zero, which would simply imply a vertical

direction of propagation (along =z ). Since we are interested in other

directions of propagation too, the only way to go further seems to be

discarding equation (2-6b). This implies that within the range of the

proposed transformations (2-2), we cannot get rid of the Qx'z' term

in the transformed equation. We shall discuss later the implications of

this fact.
Let's then assume that ac + bd # 0 and, again try to transform

back the more complex equation:
2 2
(a” + b") Qx'x' + 2(ac + bd) Qx'z' + 2(ce + df) Qz't' = 0 (2-11)

In this case we obtain for the coefficient of PZz ;

( b2 - a2 - 2abd/c ) cz/y2 . Making this coefficient vanish leaves us

with two possibilities: either ¢ = 0 or b2 - a2 -~ 2abef/c =0 .

Notice that these conditions exclude a rotation of the axis as a possible
transformation to be considered. Furthermore, if we wanted to consider
a stronger (worse) approximation of equation (2-5) by neglecting both
Qz't' and Qx'z' terms, this last result, plus the previous one, indicates
that we would be left onlywith the possibility of ¢ being zero.

Using equation (2-6¢) to reexpress the second possibility through

e and f , we can then write our three constraint equations as:

? 4+ 2 = 12 (2-12a)
a/b = - f/e (2-12b)
c = 0 (2-12¢)
or .
c/d = 2 ef/(f%-e? (2-124)
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We could go farther and try to get additional constraints by satisfying
finer conditions (a good fit to the circle in the dispersion plane etc.),
but these cosiderations at the present moment would take us too far
from our main objective of including layered media in our scheme. I
shall simply point out that when picking out a given transformation,
besides the mathematical conditions discussed above, we must see
that the chosen transformation has an inverse and that the resulting
expressions and equations converge to the previous results for vertical
propagation.

Thus, we will stop here and try to define our six functions only
with these three equations (2-12). In doing that, for simplicity, we
will choose the most obvious and straightforward alternatives. That

means for equation (2-12a):

sin®
e = -T- v (2—133)
_ cosf
£ - o So80 (2-13b)
the "-" sign being for downgoing waves (x,z-positive) and the "+"

sign for the upcoming ones. From now on we will refer only to the down-
going waves, so that we will keep only the minus sign in (2-13).

Notice that defining e and f in the opposite way wouldn't give us
the right results in the limiting case of © = 0° . The definitions
(2-13) imply, among others, two simple possibilities for a and b
according to equation (2-12b):

either,

W)
1l

cos § (2-14a)
b = -siné6 (2-14b)

or
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or

a = 1 (2-15a)

o'
it

- tanh (2-15b)

Further we shall consider separately each of the two possibilities
(2-12¢) and 2-124):

c =0

If we start by assuming that (2-12c) holds, then d will remain undefined
and the simplest choice is to make it equal 1 (although we could use

it to modify the coefficient of QX,X,):

c = 0 (2-16a)

d = 1 . (2~16b)

Therefore, in this case we get two solutions. Replacing (2-13), (2-14)

and (2-16) into equation (2-11) will result in:

v
Qe = 5 secB Q. ~ v tand Q. (2-17a)

- v = S -
(or Qz't' = 3 Q vy v tan® Q 1t for d sec ) (2-17b)

while replacing (2-13), (2-15) and (2-16) into (2-11) will produce:
= X 36 Q - v secH tanf Q (2-18a)
sztv 2 sec < 'x! x'z!

\i 3
(or Q , = E—QX,X, - v secf tanb Qx'z' for d = sec™® ) . (2-18b)

If now we assume that (2-12d) holds, then this relation plus the
definition of e and f in (2-13) allows us to define ¢ and d in

various ways, among which we may choose:



¢ = 2 sin® cosH

d = cosze - sinze
or

¢ = 2 tanb

d = 1 - tan’o

In this case we are left with four possible combinations:

Replacing (2-13), (2-14) and (2-19) into (2-11) we get:
= ¥ sech + v tan®
QZ't' 2 sec QX'X' v tan Qx'z'

Replacing (2-13), (2-15) and (2-19):

= v 3
Quigr = 5 sec™® Q. +V sect tand Qr,yt

Replacement of (2-13), (2-14) and (2-20) produces:
v
Qz't' = §>cose Qx'x' + v tan® Qx'z'
and, finally, replacing (2-13), (2-15) and (2~20):

v
Qupr = 7 secd Q. + Vv secb tand Qoo

(2-19a)

(2-19b)

(2-20a)

(2-20b)

(2-21)

(2-22)

(2-23)

(2-24)

As we might see, a very superficial consideration has already

produced us six different equations for our particular problen.

we replace for each of these solutions the chosen values of

If now

e and f into the inverse transformation (2-8) and transform back

these applied equations to the original frame x, z, t , all of them

will transform into exactly the same equation:

2 1 2 2
[(1-tan e)BXX - 2(l+sec G)Btt - 2tan68xz - secfHtand axt -

v

2
i secH azt

1P = 0

(2-25)

30
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As we shall show later in a simpler case, this behavior is
probably due to the fact that, seemingly all the coefficients of
equation (12-25) can be expressed in terms of e and f only, which
are the same for all the six considered equations [(2-17) through
(2-24)]. 1In other words, it could be said also that the neglected
term Qz'z' transforms back equally for all these six equations.
But (2-25) is the already well known equation corresponding to the
hyperbolic approximation, extensively discussed in our paper of
SEP, March 1974 (''Dispersion relationship for the slant frames
approximation"). What this says is that all the found solutions fit
equally well the circle in the dispersion plane kxkz

3. The generalization to layered media

In order to illustrate how we can generalize any of the obtained
equations to include stratified media, we will consider only the first
two equations (2-17) and (2-18). Replacing (2-13), (2-14) and (2-16)
into (2-2), we will then have the direct transformation corresponding

to the first of these equations for a velocity~constant model:

x' = x cosb - z sinb (3-1a)
z' = z (or z' =2z sec6 for d = sech ) (3-1b)
t' = - x sinB/v - z cosb/v + t’ (3-1c)

Now let's assume that, instead, we have a layered medium
[ v=v(z)] , but that all the rays leave the surface at the same
angle ei » 80 that the ray parameter p = sinGi/vi remains

constant. Then, recalling that



sinb(z)

cosb6(z)

and considering a differential

beginning of our two previous papers on layered media, it is not

pv(z)

[1 - (pv(z))?1t/?

(3-2a)

(3-2b)

"cake'" model of the type we had at the

difficult to obtain the proper generalization for (3-1) (or any other

transformation of this type):

Z
x' = [1- (pv)?1Y? x - p& v(w) dw
0
3 2.1/2
z' = z (or z' =S [1 —-(pv(w))~] d
0
b4
t' = /2 +t

- px -S e )[1 ~(pv(n)) 21t

(3-3a)

for d=sec8) (3-3b)

(3-3c)

To show that this is the right transformation notice that the corres-

ponding Jacobian is

»
Il

1/2

[1 -(pv(z)) ] ; —pv(z) ;3 O

0; 1;0 (or 0 3; [1-(pv(2)) ] 1/2

)[1-(pV(Z)) ]l/2 ;

v(z

Hence, the coefficientsof the transformed equations are:

.2 V2. 42,2 _ o 2 2 _
vaxl XX + x Xt /v 1 (pv)™ + (pv)
.2 2 42,2 _ 2.-1
szzl z + Zz' Zt /v = 1 (or [1 (PV) ] )
t'2 2
12, 22 _t _ 2 1-(v)" 1 _
Qurgr # Ey 7 TP T T3 7 0
v v v
2
1 ' ' 1 ' - _
Qx'z' 2(xx z +x 2 x. 2/ /v5) 2 pv
2,-1/2
(or - 2 pv[l - (pv)7] / )

0)

(3-4a)

(3~4b)

(3~4¢)

(3~-5a)

(3-5b)

(3-5¢)

(3-5d)

32
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Qurpr + 20 €l +x! ! =x! t! /v2) = 2(-p[1-(pw)?1M 2 4
(3-5e)
+pl1-em 212 = o
Quipr ¢+ 2Gs] €14zl £l -zl et fvP) = - 211~ (pv) 212 %) (3-5¢£)

The final transformed equation is then going to be:

Qrgr * Quigr = 209 Qe - 2-ventM2, =0 (3-6)

Or, written in the more familiar way, after neglecting the Qz'z'

term:
0 252 -Gv@ T, - @ i-event Vi, Gera)
Cor 0 =52 o o2 (@ -(v)?1 ™2, | for d=sect ) (3-7b)

Using relations (3-2), this equation could be written rather in terms of

angles and we would obtain equation (2-17):

Q. = ) sec6(z) QX'X' - v(z) tané(z) vazl . (3-8a)

(or Q_, = VZ(Z) QX'X' -v(z) tanbd(z) vazv ) (3-8b)

We could repeat exactly the same procedure in relation to any other of
the considered equations. Thus, if for example, we replace (2-13),
(2-15) and (2-16) in (2-2), we would obtain the transformation

corresponding to equation (2-18):

x' = x - z tanb (3-9a)
z2' = o (3-9b)
t' = x sin6/v - z cos8/v + t' . (3-9¢)
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Therefore, using again (3-2), the obvious generalization to stratified

media would be:

zZ
x' = x - pg v () [1-(pv ) 2172 aw (3-10a)
0
z' = z (3-10b)
z 2,1/2
£' = - px - <S V(w)[l (pv ()] +t (3-10c)

(Compare with result (1-3) and the corresponding discussion).
If in this case we compute the Jacobian as well as the coefficients

of the transformed equation, we would end rather with (after dropping

the Qz,z, term):

iy = BB (-Gun? 2, ~—B—Yi51~—-o s (3-1D)
1-(pv(2))?

which in terms of angles is exactly equation (2-18):

Qz't' = véz) sec36(z) Qx’x' ~ v(z)secH(z) tanb(z) Qx'z' . (3-12)

4. Significance of the presence of the Qx'z' term

As we pointed out before, the price that we have to pay for suppres-
sing t din the transformation of the spatial coordinates, is the presence
in the transformed equations of a Qx'z' term, which can by no means
be avoided. I would like here to partially evaluate how high this
price can be. The first thing to notice is that, computationally
speaking, the presence of this term doesn't represent any special
difficulty. As a matter of fact, we have already computed it before
in other problems. Economically speaking, it does represent a difference

since, to start with, we can no longer use an explicit scheme. As shown



previously, in computer time this means, at least, a factor of 2
On the other hand, studying a different situation where this term
also arises, Steve Doherty has shown that its presence doesn't seem
to be of great significance within the problems considered by him.
I will focus attention on the effect that the suppression of this term
has in fitting the circle (exact solution) in the dispersion plane
kxkz . In doing so, let's start by recalling that, out of the six
obtained equations, only the first two ( ¢=0 ) allow such an approxi-
mation. If we try to neglect the Qx't' in the last four equations
( ¢#0 ), we would come out with non-vanishing Pzz terms when
transforming them back to the original frame. Thus, we will have to
restrict our further analysis only to equations (2-17) and (2-18).
Neglecting both the Qz,z, and the Qx'z' terms and assuming

that ¢=0 , the transformed equation (2~5) becomes:

2 2
(a”+1b" ) Qx'x' +2d sz't' = 0 . (4~1)

Replacing c¢=0 into (2-9), the Jacobian corresponding to the related

inverse transformation is then:

1 b
x',z',t" = —a‘ 5 - 5‘3 ; 0 (4-2a)
1
x',z',t" = 0 a‘; 0 (4-2b)
e be-af

=--=; — ; 1 . (4-2¢)

35
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Now let's transform back equation (4-1) to the original frame:

2

2
[ (a%+b ) G088+ 24E(x, 0 42 8+t 508 1P =0 (4-3)

Further we will compute each coefficient separately and, with the help

of relations (2-12), we will express the results in terms of e and f :

Pt @bl = @2+ b7)/at = 1+ (/D) = 1/ (4-ba)

Pt 0 (4-4b)

Ptt : (az-#bz)ti,-+2dftz, = e2(a2-+b2/a2-+2df(be-—af)/ad = [(e/f)z— 2]/v2
(4-be)

P 0 (4-bd)

: 2@t +b%)x_,t_, +2df x_, = ~2e(a+b?)/ale 2bdf/ad = 2e(e/£)  (4obe)
xt X X A
P 2dfz, =2¢f (4=4E)

Placing all these expressions in equation (4-3) we obtain:

e 2 _
- 2e(f) th-PZfazt} P=20 (4-5)

1 1,,e2
i o+ ;Ei(fﬁ -2]8,

(fv)2 XX

Notice that all the coefficients of this equation depend only on

e and f. As mentioned before, this may explain why we get the same
result in all the different cases previously studied. If now we use

relations (2-13) for e and f , we finally get:
(4-6)

2 1,2 1o e 20 _ 2 _
[ sec™® axx + 2(tan 6-—2)8t + - sinftan” 0 th - cosb th 1P 0 .

t
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To get the corresponding dispersion relation, we now insert the trial

solution for a plane wave of unit magnitude:
P = exp(i kX x + i kz z — iwt ) . (4-7)

This produces the dispersion equation:

kX2 - 2m sin36 kX +2m c0336 kz +(1-3 cosze)m2 =0 . (4-8)

By comparison with our previous hyperbolic approximation, this equation
corresponds simply to a parabola, with its axis being parallel to kz
(as we might have already expected, since the function has to be

singly defined). Let's briefly review the two extreme cases when

6=0° and 6=90° .

If 6=0° , equation (4~8) becomes:

k?+2mnk -2mt = 0 , (4-9)
X Z

If 6=90° , we get instead:
k. = m , (4-10)

which again coincides with the result previously obtained when considering
the hyperbolic approximation. In between ( 0°<6<90° ) , equation

(4-8) produces, as said before, a parabola that I computed and plotted

for several cases ( 6=15° , 45° and 75° ). As we did before,

for reference, all the plots include the exact solution (circle). The
relative error in fitting the circle is also defined through the

absolute value of the difference between the radius-vectors of the circle
and the approximation (parabola or hyperbola) for a fixed direction of
propagation. 1In order to compare better both approximations in this

region, look at Table 1, where I compare the range of angles around
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the main direction of propagation for which this relative error

doesn't exceed 5%

/
Kz | /
6 AB AB
Hyperb. app. Parab. app. _
15° 47° 40°
—
K
45° 42° 24°
75° 23° 8°
TABLE 1 FIG. 1

As we might see from Table 1 and Figures 2 through 7, for small
angles (up to 30° app.) both approximations behave more or less the same,
but as the angle increases, the situation deteriorates fast with the
parabolic approximation. We shall remember at this point that in case
it was necessary, we could improve considerably these values by
evaluating Qz,z, and Qx'z' instead of neglecting them. This
technique has been extensively described in several papers of our
previous reports.

Finally, I would like to call attention to the fact that the existence
of this approximation with an internal to the circle parabola, suggests
the existence of a similar approximation, but with the parabola external
to the circle. It is not difficult to realize that such an approxima-
tion should work better when moving toward steeper angles. Without

trying very hard, I couldn't get it within the frame of the discussed
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transformations (2-2). What I suspect is that this approximation belongs
rather to the class of transformations where t enters explicitly in

the transformation of the spatial coordinates.
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DISPERSION RELATION FOR M=1 AND DIP=45 DEG .

PARABOLIC APPROXIMATION
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DISPERSION RELATION FOR M=1 AND DIP=75 DEG.

PARABOLIC APPROXIMATION
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