


Chapter 5. Velocity Estimation

Introduction

In chapter 1 we noted that because most conventional velocity
estimation techniques assume horizontal reflectors their performance
tends to degrade when the reflectors are curved, dipping or discontinuous.
In this chapter we make a more detailed study of this degradation. On
the basis of this study, we conclude that velocity estimates may be
improved if they are based on downward continued data rather than on
surface data. Using two synthetic examples we show both that velocity
estimates can be improved by downward continuation and that this improve-
ment does not depend critically on the velocity used in the continuation
equation. Next we discuss how downward continuation might be used to
allow accurate velocity estimates to be made from data recorded in
areas where the reflectors have little lateral continuity. As a finale
we illustrate the effects of downward continuation on velocity estimates
made from some Gulf Coast field data.

Effects of Reflector Structure on Velocity Estimates

Levin (1971) showed that, when viewed on a common midpoint gather,
the arrival times of reflections from dipping planes follow hyperbolic
trajectories. Levin also showed that the rms velocities, Voms °

obtained from such data are always greater than the true wave velocity

v . Specifically, the relationship is

Ve = v/cos(¢) (5-1)

where ¢ 1is the dip of the reflector and ¥ 1is the true velocity.
Figures 5-1 and 5-~2 illustrate this dip dependence of velocity
which we shall call the Levin effect. Frame 5-1B shows moveout corrected

gathers which would be recorded over a point scatterer. Residual moveout
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caused by the Levin effect is readily apparent on these data. The
velocity estimates which would be made from the data of Figure 5-1 are
shown in Figure 5-2. The coherence of each common midpoint gather

along the various hyperbolic trajectories T( dO » h > Vs ) 1is displayed

on the midpoint versus time plot of Figure 5-2. The hyperbolic trajectories,

T( dO ’h"vrms ) are given by

2 4h 1/2 where (5-2)

dO is a zero offset travel time. The coherence measure, c( y ,VrmS ),

is a partially normalized sum of the data along each trajectory, given

by d2 hmax 2
L ( oz Qly,T) )
dl =0
cCy ’Vrms ) = d2 hmaX (>-3)
1
1 @umit?
dl h=0

For Figure 5-2 the outer time gate, (dz_dl) , included all of the data
in Figure 5-1. Peak values of c(y,vrms) indicate the best estimate of
velocity for each midpoint. As predicted by equation (5-1), velocity
error is greatest where the apparent dip of the data is largest.

Often equation (5-1) is the only correction needed to obtain true
velocities from the rms velocities of reflections from curved or
dipping interfaces. To make this correction, dip must be estimated
directly from the data. Usually, this is not difficult. Problems arise
when there are conflicting dips or when there is rapid horizontal dip
variation. Diffracted events are also a problem since their apparent
dip as measured on a section is not necessarily the angle needed for
equation (5-1). Figure 5-3 illustrates problems which can be encountered

with point scatterer diffractions.
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Figure 5-2. Velocity estimates for the data of Figure 5-1.
Displayed on the velocity versus midpoint plot, is a partially
normalized sum of the CMP gather data along hyperbolic
trajectories corresponding to various rms velocities. Peak

values indicate the best estimate of velocity for each midpoint.

True velocity is 5000 ft/sec. Estimated velocities are highest

where the apparent dip of the data is greatest. Velocity

estimates are correct near the scatterer where the dip of the

data is nearly zero.
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Figure 5-3. Apparent dip of diffraction events cannot be used to correct
moveout velocities for the effects of structure. At midpoints far
from the scatterer, the apparent dip of the diffraction is independent
of shot and receiver location. The dip is governed solely by the
asymptote of the hyperbola. For these midpoints the ray paths for
all offsets are nearly horizontal. Because of this, the travel
times of the reflections are nearly independent of offset and the
moveout velocity is very large. As the midpoint goes to infinity,
travel time becomes independent of offset and the moveout velocity
becomes infinite. 1In thiscase equation (5-1) requires the correction
angle to be 90°. Clearly the apparent dip of the data cannot be
90°, since that would imply that the material velocity was zero.

The angle required to correct the moveout velocities is shown in the
figure as ¢ . ©Note that ¢ becomes 90° for midpoints far from
the scatterer. Since measurement of ¢ requires knowledge of the
scatterer position, we can conclude that dip estimation for diffracted

data cannot be a local process.



53

Reflections from a point scatterer illustrate a second characteristic
of non planar data which can cause difficulties for velocity estimators.
The hyperbolic arrival times of point scatterer reflections tend to
diffuse velocity information away from the scatterer location. Even
if accurate dip corrections are made, erroneous velocity estimates may
be obtained from these data because the location of the estimate may
not coincide with the reflection point of the waves upon which the
estimate is based. Scatterer data illustrates the general principle that
reflections from non-horizontal reflectors, tend to diffuse velocity
information in both space and time. Since the dip angles encountered in
reflection seismology are generally less than 45°, velocity information
tends to diffuse more horizontally than vertically. Thus, diffusion
is most important when velocity is laterally variable. However, even in
the laterally invariant velocity models treated in this thesis, velocity
diffusion may result in contamination of deep velocity estimates with
estimates based on reflections from shallow non-horizontal reflectors.

Preprocessing with Downward Continuation

The incorrect positioning of velocity estimates which we have called
velocity diffusion occurs when the location of a portion of data on a
seismic section does not coincide with the location of its reflection
point. In earlier chapters we found that downward continuation can be
used to position or migrate all data on a section to their reflection points.
We can exploit this property of downward continuation to improve velocity
estimates by using downward continuation as a preprocessor for conven-
tional velocity estimation techniques. If we do this, the resultant

velocity estimates should not exhibit any velocity diffusion effects.



This approach has an additional advantage: it suppresses errors
due to residual moveout caused by the Levin effect. To see why this
occurs, consider data recorded over a point scatterer. Velocity estimates
made from such surface data must be dip corrected as indicated in equation
(5-1) and Figure 5-3. Migration collapses point scatterer hyperbolics to
focuses for which dips measured as shown in Figure 5-3 are zero. Because
of this, equation (5-1) implies that no dip corrections are necessary for
velocity estimates based on downward continued scatterer data. Since
the wave equation is linear, we can conclude that no dip corrections are

necessary for any reflector geometry, on the basis of this point scatterer

example.

Figures 5-4 through 5-7 demonstrate the usefulness of downward
continuation in removing diffusion and Levin effect phenomena from
velocity estimates. Figure 5-4 shows the earth model used to generate
the data for 5-5, 5-6 and 5-7. The leftmost frames of 5-5 show two
moveout corrected common offset sections generated by using the data of
5-4 as initial conditions in the time reversed version of equation
(4-23). Differences between the near trace section and the far trace
section are due to structurally caused residual moveout. The center
frames of 5-5 show the same surface data after migration. The rightmost
frames show the data after migration with 10% too low of velocity. In
spite of the erroneous velocity, migration has removed most diffraction
effects from these data.

Figure 5-6 shows moveout corrected gathers constructed from the

data of Figure 5-5. The surface gathers exhibit much structurally caused

residual moveout. The migrated gathers, on the other hand, are independent

of offset. The undermigrated gathers on the far right of Figure 5-6
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Figure 5-5 cont'd.
frames are moveout corrected surface data sections constructed by using
the earth model of 5-4 as initial conditions in the time reversed
version of equation (4-23). Water velocity was used for both the
moveout and migration velocity. The upper frames are small offset
data (h=600') . The lower frames are large offset data (h=3600").
The center frames show the surface data after migration. Reconstruc-
tion is not exact due to dip filtering used in generating the surface
data. The rightmost frames show the same surface data after migration
with a velocity which was 10% too small. In spite of the incorrect
velocity, most of the diffractions apparent in the surface data have
been removed by downward continuation. These frames illustrate the
fact that migration quality is moderately insensitive to velocity

error if reflector dips are not large.



illustrate that downward continuation, even with an erroneous velocity,
can result in dramatic reductions in velocity diffusion and Levin effect
phenomena.

Figure 5-7 depicts the velocity estimates made from two common
midpoint gathers of the data of Figure 5-5. The locations of the gathers
are given by the arrows in Figure 5-4. Velocity estimates based on
surface data are shown on the left of 5-7. Estimates Eased on migrated
data are shown on the right. Velocity diffusion causes the number of
'events' on the surface estimates to be larger than the number on the
migrated estimates. Erroneous velocity estimates caused by the Levin
effect are apparent on the surface estimates.

The migrated data for Figures 5-4 through 5-7 were constructed with
equation (4-23). Thus, each common offset section was migrated separately,
using a constant moveout and continuation velocity. The moveout and
continuation velocities were the same as that used to generate the surface
initial conditions. Because of this, these figures demonstrate only that
downward continuation with the true velocity allows accurate estimation

of that already known velocity.

Downward Continuation with Erroneous Velocities

When downward continuation is used in a velocity estimation scheme,
the choice of a continuation velocity must be made before the true
velocities are determined. This order of operations almost guarantees
that the continuation velocities used in velocity estimation will differ
from the true velocities. 1In the preveous section we demonstrated
that continuation with the correct velocity, results in improved estimates.
Here we attempt to analyze the results which can be expected in the

realistic case where the continuation velocity is incorrect.
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To do this we need to consider equation (4-9) from the previous

chapter. Copying this equation from chapter 4 we have

h Vo, d2 rzhzx 2
Q.. +5 G _+9)Q = -—F(+ Y@+ 3.)7Q
dr d 'y h?' “r 282 4 v4d2 y h
hruzx az
vdB
where
: 2 2
az = 1+ 4h ; B = d-r/v and vy = (1 - y-—) . (5-5)
2d2 62

Equation (5-4) is a continuation equation which is valid for a constant
moveout velocity, v , but a variable wave velocity Vv . The Y
dependent terms of (5-4) turn on only when the moveout correction velocity
differs from the true velocity. Thus, one way of analyzing the errors
that may result from continuation with an erroneous velocity, is to examine
the y dependent terms of equation (5-4) We shall use that approach
here. In analyzing (5-4) we will neglect the effects of amplitude
variation due to geometrical spreading and of wavelet stretching due to
moveout correction. In making the analysis, we will examine each type
of term in (5-4) in succession. If a term is found to be unimportant
under some reasonable assumption, we will drop it from the continuation
equation. After making all reasonable deletions, we will compare the
resulting equation to (4-23), the equation used earlier to remove
structural effects when velocity was known. If these two equations
are markedly different we can expect some problems to result from
downward continuation with (4-23).

As a first step in the analysis we will drop the Qhr , er and

Q

vh terms on the basis of the arguments given in chapter 4. Next
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we study the behavior of the remaining terms of (5-4) under the assumption

that the earth's velocity structure is layered and that the reflectors

have no dip. 1In this case Q_ = 0 and terms depending on Qy may be

dropped from (5-4) leaving

2 2

2.2 2
d
(Z +

r h hro
7)) Yyt
v d v'dB

NASS

Q
28 hd
(5-6)
_ X 2 2.2
5y (1+4n" /v d™) Qdd
Although equation (5-6) looks complicated what it does is not complicated.
If y=0 , the design of the coordinate system requires that surface and

buried receiver data be equivalent. Thus, when v=¥ and Qy=0

continuation with (5-6) is a null operation. When vY#0 the situation

is a bit different.

Moveout correction of surface data requires correction for both

the upgoing and downgoing legs of the reflection path. Buried receiver

Residual moveout

data requires correction only for
caused by differences between the
correction velocity is associated

Therefore, when v#0 buried

the downgoing path.
true velocity and the moveout
with both legs of a reflection path.

receiver data have half the residual

moveout of surface receiver data (here we are considering the travel

times of the zero offset arrival to be part of the residual moveout).

In the case we are studying, this

between surface and buried receiver data.

no dip and Y#0 , the main result

reduction of residual moveout.

reduced moveout is the main difference
Accordingly, when there is

of continuation with (5-6) is a 50%
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If the residual moveout of an event is small compared to its
zero offset travel time, one can show that the time shifting term of
equation (5-6), Qdd , performs virtually all of the required moveout
reduction. Thus, when velocity error and offset are moderate, the terms
depending on th and Qh in (5-6) do not significantly affect the
downward continued data and they may be neglected. If downward continua-
tion is used as part of a velocity estimation procedure it may not be
desirable to model behavior governed by any of the h dependent terms
of (5-6), including Qdd . This is because there is a great practical
advantage to be gained by insuring that residual moveout due to non-zero
values of Yy be independent of receiver depth. If this is done, most

velocity estimation programs designed for use on surface data can be

applied to downward continued data without modification. It is for this

reason that in velocity estimation applications we will drop all the h

dependent terms in (5-6), giving a continuation equation of the form

v az d2 rzhzy hroc2 e
Q, = -3 5 (G i) + Tl - 55 Q (5-7)
dr 2 B2 4 v4d2 vy v2d 8 dy 2v “dd

By choosing to ignore the h dependent terms of (5-6) we have lost
the ability to accurately model situations where velocity varies
horizontally. More precisely, we have made the assumption that velocity
does not vary significantly over distances comparable to the receiver
cable length. Since this is the assumption made when velocity is
estimated on the basis of correlations of data along hyperbolic paths,
we feel that it is justified here. This assumption along with the fact
that our continuation equations do not downward continue sources, is
the main reason that the methods given in this thesis are strictly

valid only for the first class earth models discussed in chapter 1.
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The final term in (5-7) we shall consider is the Qdy term. As
we noted above, when Yy#0 correctly downward continued data have
residual moveout, including an incorrect zero offset travel time. A
look at the definition of y in equation (4-1b) shows that y depends
not only on the source and receiver coordinates, (g,s,z), but also on
v and t . This dependence along with the residual moveout causes each
offset of the correctly migrated data corresponding to the same reflec-
tion point to appear at a different position on the y axis. This
effect is undesirable because it means that migrated common midpoint
gathers are not common reflection point gathers. Integration over d

using a high frequency assumption shows that Qd is a horizontal
y

shifting term. Its predominate function is to shift, without change

of form, each offset of the data a different distance along the y axis.

Because of this, we conclude that Qdy models the undesirable effect
discussed above. Since we don't need to model this effect we will

delete the %y’ term from (5-7) leaving

_ va Y ,
Q = -~ (7t )Q_ - Q (5-8)
dr 282 4 V4d2 yy v ‘dd

Notice that we could have used this same reasoning to delete the other

horizontal shift term, th » had it not been neglected earlier.
Equation (5-8) is the equation we will compare to (4-23) to get

an idea of how large migration velocity error must be before downward

continuation causes degradation of velocity estimates. Copying equation

(4-23) from chapter 4 we have

_ v d 2 2
Qe = ~ 5 (g ) (1+4n" /v

2.2
. d“ ) Q (5-9)

d-r/v yy
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If Yy 1is such that (5-8) differs markedly from (5-9) we should expect
some problems to develop with the downward continuation.
Consider first, the coefficient of ny in (5-8). Substituting

for az and 62 and rearranging we have

*
2 2 2.2 2 2.2
vo d° rhy, _ v 4h d 2 4r"h7y _
T2 2(4+42)— 8(l+22)(d—r/v)(l+ 44)(510)
B v d v'd v d

The over-barred term in equation (5-10)represents a difference between
(5-8) and (5-9). For reasonable values of h and <y this term is
small and its absence from (5~9) will not cause much error. For

v = 1.2V and 45° emergence angle ( 6 in Figure 4-1) its average
value is .03 .

Next consider the time shifting term Qdd . Since it shifts all
offsets equally, the lack of this term in (5-9) cannot, by itself,
degrade velocity estimates. However, since the coefficient of ny depends
on d , the time shifting done by Qdd indirectly changes the value of
this coefficient. Fortunately, the effects of this change are small
because the time shifting does not change the average value of the
ny coefficient. A more important effect results from the fact that

. . . . , vd .
migration requires data to be downward continued until r=— ( until

2
the receivers are at the estimated reflector depth). The Qdd term
changes the depth of each portion of the data such that it will be nearly
correctly migrated using equation (5-8) when r = %;-. Thus, if v>7% ,

the term shifts data to earlier arrival times. This means that the

d
lack of Qdd in (5-9) will cause the data to be overmigrated (the

receivers will be continued past the reflectors) when v >%¢ . This

overmigration will result in an incomplete removal of velocity diffusion



and Levin effect phonomena from the downward continued data. However,
since continuation with (5-9) will partially remove these effects from
the data, velocity estimates based on data continued with (5-9)

should be more accurate than those based on surface data.

In summary we can conclude that the use of an incorrect downward
continuation velocity will result in an incomplete removal of velocity
diffusion and structurally caused moveout. For data fitting our earlier
agsumptions and for moderate velocity errors, the amount of structurally
caused moveout remaining after migration is approximately linearly
related to the degree of data over or under migration. Thus, for a
continuation velocity error of 10%, approximately 10% of the surface
structural moveout remains after downward continuation.

Additionally, we can conclude that, if the continuation velocity
error is such that the data are not grossly over migrated (by a factor
of 2 or more) velocity estimates cannot be degraded by preprocessing
with downward continuation. Thus, for reasonable velocity errors
downward continuation should always make some improvement in velocity
estimates. In cases where the initial migration velocity is quite a bit
in error, more than one iteration of migration may be necessary to

obtain accurate velocity estimates.

Figures 5-8, 5-9 and parts of Figures 5-5 and 5-6 depict calculations

which illustrate these results for velocity errors of 10%. The success
of the migration preprocessing on the point scatterer events of Figures
5-8 and 5-9 is especially important because the linearity of the wave
equation guarantees that the same quality results will be obtained for

all reflector geometries.
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Figure 5-8 Cont'd.

Moveout velocity was 5500 ft/sec. The two hyperbolas were constructed
with two different velocities (top is 5000 ft/sec, bottom is 5500 ft/sec).
Since we are not simulating a variable velocity medium, these initial
conditions should be thought of as two separate models that have been
displayed on the same grid. Trace spacing is 31 ft. Time ranges from
1.52 to 2.42 seconds. The left frame is a zero offset section. The
right frame is a large offset section (h=4000'). Notice that the
arrival time of the apex of the deep hyperbola is independent of
offset. This occurs because the true velocity of this event equals
the moveout velocity. Residual moveout causes the upper hyperbola to
appear late on the large offset sections.

The bottom frames show the sections after migration with the
equation 2

d 2

h - .V 4h
Qd * E'er -8 (+ v2 ) (d—r/v) Q

yy

Migration has collapsed the hyperbolas to focuses on both sections.
Because the migration velocity was 107 too high for the shallow hyperbola,
we should expect it to be over-migrated. The focus does have some upward
curvature but the effect is small. Migration quality is not very

sensitive to velocity error.
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Velocity Estimation in the Absence of Structural Continuity

Despite its overall success as a geophysical exploration tool, the
reflection seismic method is, in some locations on earth, of little
use in determining the structure of the subsurface. In these regions
seismic data sections are characterized by having very little lateral
coherence. Such regions are usually called no-record-areas.

It is often thought that minimal amounts of useful information about
the earth can be extracted from data recorded in no record areas. 1In
locations where the lack of data coherency is the result of poor depth
penetration caused by near surface attenuation or scattering, this
conclusion is probably correct. However, in areas where the poor data
coherence is the result of the small coherence length of the earth
itself, the use of downward continuation may make it possible to extract
usable velocity information from no record data in spite of their
randomness. Two geological regions which could possibly result in
this latter type of no record data are heavily faulted regions and the
interior regions of salt, shale or igneous intrusions.

One model of the latter type of no record area is an earth consisting
of a random distribution of point scatterers. The data that would be
recorded over such a model are a random function of both midpoint and
time and thus appear as no-record data. Interference of events
generated by scatterers located at adjacent midpoints coupled with the
Levin effect may also make such data fairly complicated functions of
offset. Conceivably, for some earth models the effects of interference
may be large enough to cause serious degradation of velocity estimates
made from surface data recorded over those earth models. TIn a noise

free constant velocity environment this degradation might be manifested
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as estimates which are either incorrect or spatially variable. Since
interference reduces the total coherence of the data along the best

fit hyperbola of velocity estimators, degradation might also take the
form of a marked susceptibility of velocity estimates to external noise
sources in a noisy environment.

By now it should be apparent that many of the difficulties
associated with interference in random earth no record data can be
avoided if the data are migrated before velocity estimates are made.
Using this approach one can remove much of the Levin effect and interfer-
ence phenomena from the data. An additional advantage of using migration
is that it can accommodate the effects of reflector geometry even when
the reflectors are random in three dimensions. In the three dimensional
case it is mnecessary to regard 2z as a radial distance from the line of
the section rather than a depth.

Figures 5-10 and 5-11 show results which illustrate the properties
of both surface and downward continued random point scatterer data. Figure
5-10 shows an earth model and the surface data which would be recorded
over that earth model. The earth model simulates a random distribution
of point scatterers which increases in density from right to left on
the frame. The model was created by convolving, in time, a wavelet over
a set of random numbers. The resultant data were then smoothed over
midpoint with a (1, 4, 6, 4, 1) filter. Smoothing was required to meet
the gridding and dip restrictions of the migration equations which were
subsequently applied to these data.

Frame B of Figure 5-10 shows the surface data that would be recorded
over the earth model. Dip filtering and the finite scatterer size have
concentrated most of the energy in Frame B in the portion of each point

scatterer hyperbolic which is near the point scatterer. Thus, in spite



Fig. 5-10 Cont'd.
limited the maximum dip in Frame B to about 20°. Such steep dips are
visible on the right of the frame where the scatterer density is low.
Since the earth model and the surface data appear equally random on
the left of the frames, migration can be expected to produce little

enhancement of midpoint coherence for these data.
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of the approximately 20° dips shown on the right of the frame, most of
the energy in Frame B is concentrated in low effective dip events
(measured as shown in Figure 5-3).

Figure 5-11 depicts the surface and downward continued gathers
constructed from the data of Figure 5-10. Residual moveout is apparent
on the surface gathers especially toward the right of the frame.
Residual moveout is smaller on the left where both interference and the
scatterer density are large. Like residual moveout, offset coherence
also decreases toward the left side of the surface data frame. Unlike
the surface data, the downward continued data show no residual moveout
and excellent coherence in offset.

The absence of interference and residual moveout in Frame B of
Figure 5-11 indicates that velocity estimates based on the data of that
frame should be superior to those based on the Frame A data. Extending
these results to field data and to the earth itself, we can conclude
in principle at least, that migration should allow accurate velocity
estimates to be made from no record data recorded over reflectors which
have little or no continuity.

Interference in Random Scatterer Data

In the previous section we discussed how migration could be used
to improve velocity estimates made from random earth data and from
some types of no record data. The synthetic example of Figures 5-10
and 5-11 illustrated the magnitude of improvement that could be expected
for a particular earth model. Because of the small residual moveout
and the high offset coherence of the surface data of Figure 5-11 an unbiased
reader may question whether the improvement indicated in 5-11 is worth the
cost of performing the downward continuation. To both answer this question

and to gain some perspective on the effects of downward continuation in
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random scatterer earth models we shall need to study in detail the
interference which occurs in the surface data recorded over thesemodels.
To a large extent the importance of this interference depends on
the predominant wavelength, A , of the energy used to probe the point
scatterer earth models. Even though an earth model may be random from
point to point, any reconstruction of that earth model based on surface
recorded reflection data must be continuous over distances comparable to
the mean wavelength of the surface data. Because of this, in analyzing
interference we will consider the earth to be made up of independent
regions which are approximately a half wavelength square (half because
we use two-way travel times). We shall call these regions pixels. (The
term pixel has its origin in the field of satellite imagery where it is

used to denote the smallest region resolvable on an image.)

If an earth model is not totally random we must define pixels to
be larger than -% on a side if they are to represent independent
portions of that earth model. If these larger pixels are not square
then directivity patterns determined by the orientation of the long axis
of the pixels must be assigned to each pixel. Non-square pixels might
occur if the earth were more random in the vertical direction than in the
horizontal direction. Generally, because of the gridding and dip restric-
tions of our continuation equations, the earth models used in this thesis
have pixels which are about twice as long horizontally as vertically.
Figure 5-12 is the main tool we will use in studying interference
in random scatterer earth models. For discussion's sake we will be
interested only in the portions of the random scatterer earth model
which can contribute to the surface data recorded at midpoint Yo and
moveout corrected travel time d_. . Curve #1 of Figure 5~12 (the circle)

0

shows the locations in the earth model which can contribute to the arrival



at (yo, dO) on a zero offset section recorded over the earth model.
Curve #2 (the ellipse) shows similar locations for the data arriving

at (yo, do) on a moveout corrected large offset section

vd
(h= —Eg =z, ) . Data recorded at offsets smaller than h = zq
will have contributions from points located along ellipses falling

between curves #1 and #2.

The arrival seen at (yo, dO) on a surface recorded zero offset
section can be generated from the earth model by summing the events
in the model which fall along curve #1. Thus, much of the energy seen
at (yo, do) on a surface recorded section, is the result of the inter-
ference of events due to scatterers located outside the pixel centered
at (yo, ZO)' One measure of the importance of interference in a
portion of data is the ratio of the energy Ei , at (yo, do) , due to
scatterers located inside the (yO, zo) pixel, to the energy Ee , at
(yO,dO), due toscatterers located exterior to this pixel. Since events due

to the external pixels tend to destructively interfere we have
E = N-P (5-11)

where P is the mean power in a pixel and N 1is the number of pixels
which can contribute to the data at (yo, do). N can be estimated by
dividing the length of curve 1 by the length of a pixel.

Estimating N and using (5-11) we can get an interference measure

I , given by
e (5-12)

where ¢ dis a polar angle measured as shown in Figure 5-12.
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Equation (5-12) is strictly valid only for zero offset data. However

if offset is reasonable equation(5-12) will be fairlyaccurate for non-
zero offset data also.

Since most reflection seismic data are such that zO/)\ is in the range of 10
to 100, equation(5-12) indicates that interference is quite large in
point scatterer random earth data, even if the maximum values of ¢ in
the data are small. Figure 5-13 indicates how ¢max might be defined
for a particular set of data. The interference possible when ¢maX::10°
is illustrated by the differences between the earth model and the
surface data of Figure 5-10.

The offset to offset coherence of surface recorded random earth
data may be high even though many interfering events are present in
those data. The critical factor which governs coherence in offset is not
how many pixels interfere but which pixels interfere to form the data
seen at (yO, do). If the data are such that the same pixels interfere
on data of all offsets, then coherence in offset will be high. This
would be the case if the data were such that interference occurred
only between pixels located in regions where ¢ was small (eg. the
A region in Figure (5-12). Since the dip filtering and finite scatterer sizes

used in generating the surface data for Figure 5-10 have limited ¢max

to approximately 10° , we should expect those data to have much
coherence in offset in spite of the large amount of interference
known to be present in them. A look at Figure 5-11 shows that the
data fulfill this expectation.

Consider data of a form such that the energy arriving at
(yO, dO) is solely due to point scatterers located in the B region of
Figure 5-12. Since the length of arc on curve#l is smaller for region

B than it is for region A, data recorded in this second case will contain
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less interference than the A region data considered earlier. 1In
spite of this, the B region data will be much less coherent in offset
than the A region data. This occurs because different offsets of
the B region data are the result of the interference of markedly
different sets of pixels. Correlation between adjacent offsets of
B region data can be expected only when the number of offsets recorded
is greater than the number of pixel lengths which can be measured
along a radial line intersecting curves #1 and #2 (eg., a line like r,
s shown at the edge of the B region).

Because the various offsets of data generated by region B
scatterers can be expected to be uncorrelated, velocity estimates
based on these data will probably be random enough to be of little
value. In fact any velocity estimate can be expected to be poor as
a result of poor offset coherence if it is based solely on data due to
scatterers located in regions where the radial separation between the
ellipses corresponding to the smallest and largest offsets used in the
estimate is greater than a pixel length. In terms of Figure 5-12 we
are saying that estimates based solely on scatterers outside region A

will be poor.

In general then, we can consider any energy to be undesirable
for velocity estimation purposes if it is the result of scattering
from locations external to the region where the radial separation of
the large and small offset ellipses is smaller than a pixel dimension.
If we assume that the data generated by scatterers interior to this
region are independent of offset we can make some simple estimates
of the offset coherence of surface recorded random scatterer data. As a
coherence measure we will use an energy normalized sum over offset

called semblance. The semblance of properly moveout corrected data
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along the true velocity trajectory in offset (arrival times independent

of h ) can be defined as

(2, Q(h,d)°
Semblance = 5 (5-13)
M I, (Qh,d ) ")

where M 1is the number of offsets used in the sum and d0 is the
zero offset travel time at which semblance is measured.

In estimating the coherence of the random scatterer data we shall
express equation (5-13) in terms of quantities which are measurable
from Figure 5~12. We define these quantities as follows: S is the
number of pixels having an intersection with region A; n 1is the
total number of pixels between curves #1 and #2 which are external
to region A; and J 1is the average number of pixels along lines like
r-s 1in regions external to A . J enters into the calculation
because some pixels external to A will be summed more than once if there are
more offsets than pixels along lines like r-s . Using these definitions
we can say that on average, S pixels from region A and %— pixels

from locations external to region A contribute to each offset of the

surface data seen at (yO,dO). Thus,we can express Q as

S n/J

Q(h,d,) = I &, + I
0 i=1 g

kh (5-14)
where & 1is a random variable describing the amplitude of the wave
field in the A region pixels and u 1is a random variable describing
amplitude in the pixels external to A . We will assume that & and u
have zero mean and unit variance. Since we have assumed that data
generated by region A are independent of offset , £ 1is a constant
function of h . Since u deals with pixels external to region A ,

it has only J degrees of freedom in offset.
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To estimate semblance one need only to substitute equation (5-14)
into (5-13). We will calculate the numerator first. Performing
this substitution the numerator of (5-13), NUM , is given by

M S n/J

NOM = (I (I £+ I w
h=1 i=1 k=1

2
xh ) (5-15)

After doing the inner sums (5-15) becomes

M ~
(z (B, T, n? (5-16)
h=1

where & and 1 are new random variables with zero mean and unit
variance. Since u has only J degrees of freedom in offset, a sum of

M offsets of p can be thought of as a sum of J independent offsets

each with a multiplicity of m = %-. Thus, after summing over offset and

squaring equation (5-16) becomes

NUM = m2J2 S £'2 + ZmZJVEE-E'LN + mzn u'z (5-17)

where u' and &' are new zero mean, unit variance random variables.

\J

Since &' and u are uncorrelated the expected value of the numerator

of (5-13), E(NUM) is

2.2 2

E(NUM) = m2J%S + m?n = MO(S + 2

) (5-18)
J2

Next we will consider the denominator of (5-13), DEN. Substi-

tuting equation (5-14) into equation (5-13) we have

M s n/J
DEN = M £ ( £ E£..+ £ u
h=l =1 0 =1 kb

)2 (5-19)

After performing the summations (5-19) becomes
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Because we have made several assumptions in getting (5-22) the
values in Table 5-1 are only approximate. Noting this we can still
make statements about the value of migration in making velocity
estimates from random earth data. Since correctly migrated data are
independent of offset, their semblance along the true velocity trajectory
is unity. Thus, on the basis of Table 5-1 we can conclude that for
reasonable data parameters (offset, frequency, travel time, etc.)
migration can be expected to increase the semblance along the true
velocity trajectory by factors of about 50%.

On the basis of this discussion of Figure 5-12 we can make several
general statements about the effects of interference on velocity estimates
based on surface recorded random point scatterer earth models. First,
the wave fields seen on a section recorded over a random point scatterer
earth are primarily controlled by interference effects even when ¢max
is small. Second, interference does not greatly affect velocity
estimates if ¢max is small as in Figures 5-10 and 5-11. Third,
velocity estimates based on surface recorded scatterer data are seriously
degraded by interference when large amounts of high dip energy
( ¢max not small ) are present. Fourth, if ¢max is large, the
accuracy and stability of velocity estimates based on surface recorded
data can be improved if ¢max is reduced by dip filtering prior to
velocity estimation. Accuracy and stability can also be improved by
limiting the range of offsets used in the estimates to as small an
extent as possible. The amount of improvement will depend in detail on

the frequency content, the range of dips and the amount of noise

present in the data.



- 12 n n 2
DEN = mJ(mJS & +2nm£1',}—j—g g w' +my ') (5-20)

Thus, the expected value of the denominator of (5-13) is given by

E(DEN) = mZJ%s + m2dn = M2(S + 2 (5-21)

Substituting equations (5-21) and (5-18) into (5-13) we have

1=

S +

o)

Semblance = ———— (5-22)
S +

G

: and a pixel size reasonably consistent
If we define a P4 p y

with that ¢max we can count pixels on Figure 5-12 and use (5-22)

to estimate semblance. Table 5-1 shows semblance values for three

values of ¢ .
max

¢max S n J Semblance
15° 14 0 1 1.
30° 14 22 1.5 .8
45° 14 60 3 .6

Table 5-1. Semblance values calculated from Figure

5-12 with equation (5-22).
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The discussion of Figure 5-12 has also shown that migration
should improve velocity estimates based on random earth data, since,
for typical data parameters, it increases the semblance of two-
dimensional random earth data along the true velocity hyperbolic by
factors of about 50%. (For earth models which are random in three
dimensions the semblance increase will be greater). The significance
of this increase in semblance can only be determined in the context
of a particular noise model. However, the belief is that such semblance
increases make velocity estimates based on migrated random earth data
significantly less susceptible to the influence of noise than are

estimates based on surface random earth data.

A Field Data Example

While Figures 5-5 through 5-11 indicate the usefulness of our
migratory approach to velocity estimation when it is applied to synthetic
data, the approach must still be tested on field data. By testing the
theory of this thesis on samples of field data we hope to establish
(1) that for all data examined the method does not degrade velocity
estimates, (2) that the method makes needed dip and diffusion corrections
to coherent but complex data and (3) that the method makes possible
the measurement of velocity from laterally incoherent data. Should we
fail in our third objective we have not destroyed the theoretical model.
We have merely located regions on the earth where other unidentified
factors, perhaps theoretical, perhaps practical, are responsible for the

lateral incoherence.



As one portion of test data we shall use some 24-fold data collected
near a Gulf Coast diapir. Figure 5-14 shows a stacked section of the
test data. We will primarily be interested in the data arriving from
the reflectors above the diapir ( @ din 5-14) and from reflectors
interior to the diapir ( @ in 5-14). Hopefully, the discontinuous
reflections above the diapir and the sparse arrivals interior to it
are the result of a rather discontinuous earth structure which approxi-

mates our point scatterer model of a no record area.

Prior to making a "before and after' comparison of velocity
estimates we should briefly discuss the parameters used in downward
continuing the test data. The data were migrated using equation (4-23).
Thus, each offset was downward continued separately using a constant
moveout and migration velocity. The velocity used was 6000 ft/sec.
Velocity estimates made from the test data indicate that 'true' velocity
increases from about 4800 ft/sec at 0.4 seconds to about 8000 ft/sec at
3.0 seconds. Thus, the early portions of our downward continued data will
be over-migrated and the late portions of the data will be undermigrated.
Finally, we note that a small amount of dip filtering was used during
downward continuation to remove from the data dips which did not meet
the gridding and dip restrictions of the downward continuation operator.
Figures 5-15 and 5-16 show short offset sections constructed from
the surface and downward continued test data. Figures 5-17, 5-18 and
5-19 depict velocity estimates based on surface and downward continued
gathers of the test data. The locations of the gathers used in making
these estimates are shown in Figure 5-14. Several common midpoint gathers
located at midpoints which bracket the locations of the velocity estimates

are shown in Figures 5-20 and 5-21.
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There are two aspects in which the difference between surface
and migrated estimates is fairly apparent. First, velocity estimates
based on the downward continued data are often lower than those based
on the surface data. Figure 5-18 which is based on picks made from
the data of Figure 5-17 illustrates the lower estimates made from
the migrated gathers. This velocity change is most apparent for
estimates based on reflections with moderate to steep dip (eg.,
estimates at times greater than the 1.6 sec in Figure 5-17). The
magnitude of these velocity shifts is in reasonable agreement with

the velocity changes which can be attributed to the Levin effect.

A second difference between the surface and migrated estimates
is that there are often (but not always) fewer 'events' on the migrated
estimates than on the surface estimates. Additionally, 'events' are
often clustered closer together (in velocity) on the migrated estimates.
These differences between the surface and downward continued estimates
probably result from a combination of the effect of the dip filtering
used during migration, and of the removal of velocity diffusion by the
migration process.

Differences between the surface and migrated estimates are most
apparent for gathers located in regions of the data where
lateral coherence is high (gathers like that shown in 5-17). Where the
data coherence is poor (regions labeled o and § 1in Figure 5-14) it
is often difficult to distinguish between migrated and unmigrated estimates.
Migrated and surface estimates based on data in the a region of 5-14
are often of equally fine quality. Like the synthetic data on the left

edge of Figure 5-10,the o region of the test data yields good estimates
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in spite of its low coherence. Theoretically, in a random earth we
expect diffusion of information from midpoint to adjoining midpoint

to reduce the total coherence of the surface data along the best fit
hyperbolic of our velocity estimator. Hence, we expect the influence
of noise to be greater on the surface estimates. This effect is not
apparent, so we might conclude that the o region of the test data

is such that the effects of interference or external noise are small.
Because the o region of the data looks slightly layered and hence,
probably has a small ¢max » the most likely of these two conclusions
is that any interference present in the data does not seriously degrade
offset coherence. Both the migrated and surface estimates, based on
data interior to the diapir, were fairly noisy. However, there were
often fewer events and less spread of events on the migrated estimates
than on the surface estimates. The lack of dramatic improvement of
estimates after migration may be the result of low signal level or a
poor fit of the data to our model.

On the basis of this test example, we can draw several conclusions
about the use of downward continuation as a preprocessor for velocity
estimation. First, when dip is small and data quality is good,
downward continuation appears to have little effect on estimates
and hence, does not degrade them. Secondly, when dips are moderate,
and data coherence is high, downward continuation makes noticeable
shifts in estimated velocities as it removes structurally caused
residual moveout from the data. Finally, when the data have poor
lateral coherence, migration has only a minor effect on velocity estimates
if no significant interference effects are present in the data (eg.,

¢max is small).



