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Chapter 4 Downward Continuation of Sections

Introduction

In the previous chapter we developed equations useful for downward
continuing data recorded as a single profile. As such, those equations
were valid for wave fields generated by a single source at a fixed
location. Here we wish to find equations useful for downward continuing
data recorded as a section. That is, we want equations which can
downward continue a wave field generated by many sources at varying
locations.

An obvious approach might be to separately apply the equations of
chapter 3 to the wave fields generated by each source. The main practical
disadvantage of this approach is that data are often recorded with feceiver
cables which are too short to adequately define the initial conditions
for the profile continuation equations. Initialization is particularly
difficult in the common case where data are recorded with a moving array
of a single source and receiver. Because of the high costs of overcoming
this data initialization problem, we shall not use the profile approach
to downward continue sections. Instead,we will reformulate the problem
in a way in which data initialization difficulties are not so severe.

In doing this,we shall use an approach like that found in chapter 3.
First,we will formally describe the section data display in terms of a
coordinate system. Then we will find transformation equations between
these data display coordinates and the cartesian coordinates in which
the wave equation is usually expressed. Finally, we will find a section
continuation equation by transforming the wave equation into the section

coordinates.



Coordinate Transformation and Wave Equation

As a first step in finding the section continuation equation, we
must define both the field recording coordinates and the data display
coordinates. As in the profile chapter we will assume that the
reflectors are independent of one horizontal coordinate. Thus, our
coordinate systems will describe horizontal distances only along the
line of the section. Referring to Figure 4-1 we will fix the recording
geometry. We chose to position the sources along the line of the section
at locations S15 Sgs +ecs S - The receivers (geophones) will be
positioned along the same line at locations 815 895 ++e5 By - We will
use t for reflection travel time and 2z for depth (+z down). The
section data display coordinates will be defined as follows: h 1is
half the surface source-receiver offset; y is the horizontal coordinate
of the surface source-receiver midpoint measured from a fixed origin;

d 1is a moveout corrected two way travel time and r is the receiver

depth (4+r down).

ty=s=0

reflector

Figure 4-1. Geometry for the offset midpoint coordinate system.
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The equations which describe the transformation from the field
recording coordinates ( s, g, t, z ) to the section coordinates

(y, h, d, r) are given by:
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h = (gzs) + z(gzvs)/ (t2 - ‘(—g:g-)‘“) 1/2 (4-1a)
2

y = <_g:2r_s_)_+z(%-vi) / (e% - %)1/2 (4-1b)

A\
2 (g2 \1/2 , 2
d = (¢t '—_7—) +;,— (4-1c)
v
r = z . (4-14)

We have used v as the constant moveout correction velocity.
As in the profile frame we have included a depth dependence so that
h, y, and d are constant along a plane layer reflection ray path.

There is no coordinate describing the shot depth since we are

explicitly requiring that sources remain at the earth's surface, z=0 .

Equations 4-1 are of course invertible. Their inverse is given

by
g = y+h- 2535 (4-2a)
s = y~-nh (4-2b)
£ = (d%+an? /2 Hyl/2 ffj}ié_ (4-2¢c)

z = r (4-2d)
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Each wave field generated by each individual source must separately
satisfy the wave equation. Thus, instead of one wave equation, the
section problem requires n wave equations if there are n sources.

In terms of the field coordinates the equations which govern the wave

field are

As in chapter 3 we are using a 2-D scalar wave equation. We are also
using subscripts to denote derivatives, VvV to denote the variable

wave velocity and the delta function to denote the sources. As a
convenience,we will assume that there are a continuum of sources located
along the line of the section. If we do this, equation (4-3) can be
considered a single equation in four variables (g, s, t and z ) .
Since we are not interested in describing wave fields at the source

locations,we can drop the delta function from (4-3). Doing this we

are left with the equation to be transformed into the section coordinates

1 -
Poo ¥ Py ™ T3P = O (4-4)

Continuation Equation

Having equations (4-1), (4-2) and (4-4) we can find the continuation
equation for Q(y,h,d,r) , the wave field in the section coordinate
system. In doing this we will adopt the high frequency assumption and the

small dip assumption discussed in chapter 3. Using these assumptions and



the chain rule, the continuation equation for Q is

2 2 1 2 2 2 1 2
( hg + hz T2 ht ) th + ( yg + Y, T 27 )ny
v v
2 2 1 2 1
+ Qdd( dg + dZ - 52 dt )+ 2¢( hgyg + hzyz - 62 htyt) th
+2(hd +hd - hd )Q.+2(hr +hr - hr )g (4-5)
g g zz ~2 tt hd g g zz ~2 tt’ hr

v v

1 1
+ = + -=
" 2ygdy * 8, T Y Qg F 2ty = v e,

24T ) Q = 0

+2(dr +dr
g8 zz o

where hz s hg s ht etc. denote partial derivatives of the section
coordinates.

We shall need expressions for the partial derivatives in equation
(4-5) .Thankfully,there is an immediate simplification. The definitions
of y and h differ only by the sign of s in the first terms of
(4-1a) and (4-1b) . Thus, we have

dy _ 3h )
a(gstsz) a(g,t,z) (4 6)

The expressions for the remaining derivatives are

or

Tty - 0010 (4-72)
od 1 ~-2h
L (4-7b)
3(t,z,8) v 2,
o] -rh h 1 r 2rh2
St e) - Bt a3 T et 3.2 (4=7c)
vdB
4 1/2
where a = (1 + 55 ) and B = (d-r/v) (4-8)
v d

Using (4-6), (4-7) and (4-8) equation (4~5) becomes
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9 oh o2 dz r2h2
vd e +
el O (er+Qhr )+ 2 { + 2 v }( Q +-2th Q)

(4-9)
%h 2 2
ro Y -
"3 ( Qgp * )+2YQdd 0
v d B
where o and £ are as defined in (4-8) and
2
v = (1——2) (4-10)
If the moveout velocity is the same as the velocity in the wave
equation, then y = 0 and equation (4-9) becomes
2 2h dzaz )
= — + + + 2 + ) = 0 (4-11
v er + vd (er er) 4 B2 ( ny th th
Substitution for o and B and rearrangement gives
h = - (- 440’ +20 .+ (4-12)
Qr *q @+ Q) = - (o) § (L 272 0 ¢ Oy F 20, + 0y, )

Equation (4-12) governs the downward continuation of multi-offset
sections (sections of CMP gathers). Although we could devise a scheme
for numerically integrating (4-12) and use it to perform downward
continuation, we would rather work with a simpler equation if possible.
Much of the complexity of (4-12) is due to the Qhr s th and th
terms. The presence of these terms in the continuation equation seems
to indicate that common offset sections cannot be migrated separately.
This implied coupling not only increases the computer time and storage
required to migrate a single common offset section, it also precludes the
possibility of migrating data recorded with a moving array of a single
source and receiver. 1In an effort to simplify (4-12) we will examine

these and other terms to see if they are important in describing the
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o 22 sine (4-17)

Taking a derivative with respect to h we get

0T 4h . 2
h = SE = - — sin™¢ (4~18)
v tO

Simple geometry shows that for a zero offset section we have

9T _ 2 sin¢

Sy y 2 (4-19)

If we disregard the fact that the apparent dip of a reflector is a weak

function of offset, and use a plane wave assumption we have

Q T
h . _h (4-20)
Q T
y y
Substituting from (4-18) and (4-19), equation (4-20)becomes
% 2h sing
— & = 24 = - sing tan® , (4-21)
Qy v to

where 0 is as defined in Figure 4-1.

We can use (4-21) as a rough guide to the importance of the Qh
terms in equation (4-12). Table 4-1 shows equation (4-21) evaluated
for particular values of 6 and ¢ . From the table we can conclude
that th is neglectable compared to ny for many commonly encountered
dips and offsets. (The calculations in the figures of chapter 5 indicate
that the errors implied by the Table 4-1 are probably larger than the
errors which actually occur.) The table also indicates that the terms in
(4-12) containing first order h derivatives cannot be neglected relative
to terms containing first order y derivatives if either dip or offset

is not small.
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measured
values of
Qh th th
° i Q q 2
y vy vy
30° 30° .29 .08 .09
45° 15° .26 .07 .09
30° 15° .15 .02 .03
15° 15° .07 .005 .01
A B C

TABLE 4-1. Ratios of terms in equation (4-12) for various dips
and emergence angles. Columns A and B are based on equation
(4-21). Column C is the result of numerical experiments on
surface synthetic data. The precision of column C is about
+ 20%. Because correctly migrated data are independent of
offset, the average value of these ratios during migration

should be about half the size shown in the table.

To get a handle on the function of the non-neglectable Qhr s
er and ‘th terms, we will investigate their effect on the migration
of synthetic data that would be recorded over a point scatterer located
at =Yg - Such surface data are symmetric about =Yg and h=0 .
Consider first the directional derivative terms er and Qhr .
Inequality (4-13) implies that the er term should be more important
than the Qhr term. On the basis of our study of profiles in chapter
3, we expect that the main result of the inclusion of er in a

continuation equation will be the introduction of a minor asymmetry in

the focus of migrated scatterer data.



The migrated data of Figure 4-2 were constructed with an equation

of the form

2 d .2

5 ) (d—r/v) ny

+8q = —%(1+4}21 (4-22)
v

er d “yr 4

As expected they show a small amount of skewing due to the presence of
Q . in (4~22). As in chapter 3 we interpret this skewing to be the
y

result of source-receiver directivity effects.

Next consider the th term. Because the dip (in y ) of the
point scatterer hyperbolic changes sign at y=yO s Qy must also
change sign at this location. Equation (4-14) shows that apparent
moveout velocity is independent of the sign of dip. Thus, the residual
moveout of the point scatterer data and Qh must be symmetric about
=Yg - Because of this we can conclude that th will change sign
at Y=Y, and thus, must cause some skewing of downward continued
scatterer data. Figure 4-3 shows data migrated with and without the
th and er terms of (4-12). As expected,the inclusion of these
terms in the continuation equation results in some asymmetry in the
migrated data. Note, however, that the position of the focus is
apparently unchanged by their presence and that the data continued
without th and er appear properly migrated.

Although Table 1 indicates that the er s Qhr and th terms
cannot be deleted from (4~12) on the basis of size, Figures 4-2
and 4-3 indicate that the effects of their deletion are not large.
The same figures also indicate that migrated data generated with

equations including these terms appear to exhibit some skewing or
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asymmetry which one would not usually expect in earth models.
Unfortunately, our present level of understanding and observational
experience are not sufficient to allow us to make definitive statements
about the exact role of these terms in wave equation migration. Perhaps
they arise solely because we downward continue receivers but not sources.
(Ideally we would like to downward continue both sources and receivers
simultaneously.) Possibly, better migrations could be achieved with
equations containing er , th and th if we were to use a reflector
mapping principle that accommodated source-receiver directivity effects.
Regrettably, in this thesis we must leave the question of the role

of th Q and Qhr unanswered. Fortunately, we can still make use

yr
of the equations we have derived, since all our calculations show that,
for models fitting the assumptions made in chapters 1 and 3, the
neglection of these terms, at worst, causes only travel time changes which
are very rmuch smaller than a wave period. Because errors of this size are

virtually undetectable on field data, we can neglect them leaving an

equation of the form:

4h2 a 2

) ( )7 Q . (4-23)
vzd2 d-r/v yy

r _%(l+
One might assume that because of the deletion of Qh terms,
equations like (4-23) cannot model the interaction of dip in the vy
direction with curvature in the h direction. Specifically, one
might think that (4-23) does not model the dip dependence of apparent
moveout velocity described in chapters 2 and 5. Surprisingly, this is
not true. Many of the figures in chapter 5 demonstrate that equation
(4-23) accurately models this phenomena. 1In fact, equation (4-23)
is the continuation operator we shall use in chapter 5 to remove

structural effects from the data prior to velocity estimation.



