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Chapter 3. Downward Continuation of Profiles

Introduction

Although profile data arenot central to the velocity estimation
problems we wish to deal with in this thesis, we will spend some effort
to describe the profile problem in the hope that familiarity with profiles
will make the somewhat more difficult problem of downward continuation of
sections easier. Since profiles are generated with only one source, much
observational experience and insight can be readily applied to them. This
is not the case for sections. The fact that the wave field to be
downward continued is generated by many separate sources often makes it
difficult to apply insights gained from other wave phenomena to sections.
Another reason for studying profiles as an introduction to downward continua-
tion, is that profiles can be described with one less coordinate than sections.

Dowvnward Continuation and Reflector Mapping

We shall begin with a discussion of what we mean by downward continua-
tion and of why it is important. By downward continuation of seismic
data we mean synthesizing data that would be recorded with buried receivers
from the data recorded at the earth's surface. Figure 3-1 gives an
indication of the desirability of downward continued data. The top frames
show the hyperbolic nature of the data recorded with surface receivers
over a point scatterer. The bottom framegshow the reflections that
would be recorded if the receivers were located at the depth of the
scatterers instead of at the surface. (Note that we have excluded
horizontally propagating waves.) A look at the buried receiver data shows
that reflections are recorded only at the receiver positioned on the

scatterer. Figure 3-1 illustrates the general statement that data
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recorded with buried receivers give a simpler picture of the subsurface

than do data recorded at the surface.
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Figure 3-la. Profile recorded over a point scatterer. The frame on the

left shows the reflection paths. The right frame shows the data.

Wave velocity, v , is constant.
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Figure 3-1b.

Profile reflections from a point scatterer recorded with

buried receivers. Since we exclude horizontally propagating waves

reflections are received only at the geophone located at the point

scatterer.
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To describe the uses of downward continued data a bit more precisely
we shall need to consider reflector mapping in general. The basic
principle of reflector mapping is that reflectors exist at points in the
earth where the first arrival of the downgoing wave is time coincident
with an upcoming wave. In the absence of multiple reflections, this is
the only principle needed to map subsurface reflectivity in a region of
known velocity. Since data recorded with buried receivers are just the
upcoming wave field at the receiver location, downward continued data
contain almost all the information necessary to determine reflector
geometry. The other information needed is the subsurface downgoing wave.
Fortunately, in the absence of multiple reflections, synthesis of the
downgoing wave is simple, since to first order it is independent of
subsurface reflectivity. One does not err much in assuming that the
downgoing wave of profiles can be modelled by a quasi-spherical wave expanding
in the velocity structure of interest. Thus, one reason downward continua-
tion is interesting and important to the geophysicist, is that in many
cases, the ability to perform downward continuation is equivalent to the
ability to map subsurface reflectivity.

The process of transforming seismic data into a map of subsurface
reflectivity is usually called migration. The reflectivity maps are often

called the migrated data. Although downward continuation has its most

obvious application to the field of migration, in later chapters we show
that it can be an important tool in velocity estimation.

A final topic we need to discuss in this section is the operator
which we should use for downward continuation. The wave equation is the

operator which governs propagation of the upcoming wave from the reflector
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to the surface receivers. Accordingly, we shall use this same operator,

albeit time reversed, to propagate (downward continue) the upcoming wave

from the surface back to the reflectors.

Moveout Correction

The process of reflector mapping we have described requires
downward continuation of the upcoming wave and a determination of where
the downgoing and upcoming wave are time coincident. Consider the case
where the reflectors are plane layered and velocity is constant. If the
downgoing wave is a vertically incident plane wave, the search for time
coincidence is simple because neither the downgoing or upcoming wave depends
on the horizontal coordinate. This simplicity is lost in the profile
geometry because the downgoing wave is spherical. 1Its arrival time and
the arrival time of the reflected wave at a particular receiver depend on
both the vertical and the horizontal coordinate of that receiver.

Even if we ignore the question of time coincidence, figure 3-2
shows that downward continuation of profile data will probably be more
difficult and expensive than continuation of the reflections generated by a
plane wave source. For the constant velocity, flat reflector case,
downward continuation of plane wave reflections amounts to simple laterally
invariant time shifting. Profile wave field continuation requires
hyperbolic time shifting and lateral repositioning of the data.

It would be a great advantage to be able to treat profile wave forms
recorded over layered reflectors with the same ease as the wave fields
generated by plane wave sources. One way of accomplishing this goal
is to perform downward continuation and reflector mapping, in a coordinate
system where the profile waveforms recorded over layered reflectors appear

planar. To transform the data into these coordinates we shall need
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PLANE WAVE
SURFACE CONTINUED

PROFILE
SURFACE CONTINUED
i g-s - T e g-s

Figure 3-2. Profile and plane wave source data before and after continua-
tion. The bottom frame shows an un-moveout corrected profile recorded
over a horizontal reflector. The curvature of the downward continued data
(right) is the result of the hyperbolic arrival times of the downgoing
wave. The smaller horizontal extent of the downward continued data is due
to the fact that reflection points of the surface data are at the midpoint
of the surface shot and receiver. The top frame shows the data expected
for a plane wave source. The downward continued data differ from the surface
data only by a laterally invariant time shift. If moveout correction had
been applied to the data of the lower frame they would have appeared exactly
like the data of the top frame. Moveout correction requires that surface
data be time shifted hyperbolically and that data recorded at each receiver

be placed at the midpoint of the shot and that receiver.
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equations which deform the hyperbolic arrival times of reflected
spherical waves into horizontal lines. Another way of saying this, is
that we need equations which correct for the differential travel time
caused by non-zero shot receiver offset. Such transformations have

long been used by explorationists. They are called normal moveout or

or just moveout corrections. We adopt that terminology here. Data

displayed in these hyperbolically deformed coordinates will be called

moveout correc;ed data.

If the simplicity gained by using moveout corrected data was
achieved only when the reflectors were horizontal, moveout correction
would be of little value to us. However, moveout correction approxi-
mately corrects for the effects of shot receiver offset even when the
reflectors are only approximately horizontal. Because of this, it is
nearly always true that less work is required to downward continue
moveout corrected data than raw data. This reduction is important to
us because we shall use numerical methods to perform downward continuation.
In general, the less work a numerical scheme must do, the more accurate
and inexpensive it becomes.

In addition to reducing numerical-computational problems, the use of
moveout corrected data also eases the determination of time coincidence
of the upcoming and downgoing wave. To see this, consider a moveout
corrected profile recorded over a curved or dipping reflector. Suppose
each portion of these data was downward continued until the arrival time
of the downward continued data corresponded to the vertical travel time
associated with the receiver depth. 1In this case, the arrival time of
the moveout corrected downgoing wave (the vertical travel time) would
be the same as the travel time of the upcoming wave (the data). Thus,

by our mapping principle the downward continued data would be a



20

reflectivity map. By using moveout corrected data we replace the task of
finding time coincidence of the upcoming and downgoing wave with the simpler
task of insuring that the data are continued until their arrival time equals
the vertical travel time associated with the receiver depth.

Because of the advantages associated with the use of moveout correction,
any subsequent discussion of downward continuation in this thesis will
always be in terms of moveout corrected data.

Coordinate System and Wave Equation

Once we decide to downward continue moveout corrected data, we are faced
with the question of how the wave equation must be modified so that it is
valid for wave fields modified by a moveout correction. To resolve this
question we must consider in some detail what we mean by the wave equation
and moveout correction.

We will consider the wave equation first. To a great extent the form
and complexity of the wave equation depends on the materials in which one
wishes to study wave propagation. More correctly, the form one uses does
not depend on the materials, but instead on the assumptions about the
materials (be they correct or not) one wishes to make. In this thesis we
shall assume that the materials are such that wave propagation is adequately
described by the scalar wave equation. We shall also assume that no shear
wave can exist in the medium. In deriving continuation equations we shall
also assume that any reflectors are independent of one horizontal coordinate
and thus, we shall use a 2-dimensional wave equation.

The form of the wave equation also depends on the coordinate system in
which it is expressed. Generally, we write the wave equation in a
System directly relatable to physical space. In this discussion, we
shall express it in a 2-dimensional cartesian coordinate system with g
being the horizontal coordinate, =z being the vertical coordinate

with +z down into the earth, and t being the time coordinate. To
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fix the system to the problems of interest we shall assume the receivers
are distributed along the g axis and that the shot is located at
(g,z,t) = (s,0,0) . With all these things in mind, we can write the wave

equation which we assume governs our problem as

P + P = +8(s~g,z,t) (3-1)

— P
88 z2Z 62 tt

where P is a pressure and Vv is the compressional wave velocity. We
have used subscripts to denote partial derivatives. The delta
function represents the source.

Now that we have the wave equation tied down, we will discuss moveout
correction. As we have said previously, moveout correction is an operation
designed to remove hyperbolic, source-receiver geometric effects from
the data. An important property of this operation is that it is one-to-
one. That is, each point on the field data (the upcoming wave recorded

at the earth's surface) is mapped uniquely onto the moveout corrected

profile. Because of this one to one property, moveout correction can

be thought of as an invertible coordinate transformation from a set of
field recording coordinates to a set of moveout corrected coordinates.

We define these moveout corrected coordinates as follows: =x is half the
surface source receiver separation, d is a moveout corrected two-way
travel time and r 1is the receiver depth. Using these definitions,

and referring to Figure 3~3, we can express the normal moveout operation as

x = g/2{ 1+z2/((? - g2vH2 y (3-2a)
d = ( t2 - gz/v2 )l/2 + z/v (3-2b)
r = z (3-2¢)

where v 1is a constant moveout correction velocity which need not be

related to ¥ , the velocity in the wave equation.
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Figure 3-3. Geometry and coordinates for continuation of profiles.

These equations are an extension of the usual definition of
normal moveout because they are depth dependent. For the moment, we
will study the effects of moveout correction on surface data by setting
z =0 . In this case we see that (3-2a) performs the operation of
placing each trace at the midpoint of the shot and receiver. Equation
(3-2b) performs the hyperbolic time shifts necessary to flatten
reflections from plane layers.

The reason that we have explicitly included depth dependence is
that we wish to describe moveout corrected data that arerecorded at
subsurface locations. Since x 1is usually thought of as the horizontal
coordinate of the reflection point, and d as a measure of reflector

depth, equations (3-2a) and (3-2b) include a 2z dependence such that
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for plane layer reflections, these quantities are constant along a ray
path. This definition for d makes this type of moveout correction
different than that discussed in the previous section, in that downward
continuation in this coordinate system will cause no change in the arrival

times of plane layer reflections which have been properly moveout corrected.

~ As we noted previously, transformation (3-2) is invertible; the

inverse is

g = (d-r/v) 2x/d (3-3a)
t = (d-r/v) (1+ 4x2/V2d2 )1/2 (3-3b)
zZ = r (3—30)

Continuation Equation

Now that we have equations (3-1), (3-2), and (3-3), we return to the
question of modification of the wave equation. Since moveout correction
is a coordinate transformation expressed by (3-2) and (3-3), all we need
to do to find the equation which governs moveout corrected data is to
transform (3-1) into the moveout corrected coordinate frame.

As a first step we note that the wave fields are invariant under

coordinate transformations. That's

Q(Xyrsd) = P(g,z,t) (3-4)



We have defined Q to be the wave field viewed in the moveout frame.

Now we can transform the wave equation. Using the chain rule we

have
Pt - QX X + Qr rt + Qd dt
- Q. x°+q i+ A +2x d Q. +2 a
tt XX ot rr T T Qa9 e %% Sxa T K T Y%
t2rd Qgtx Q Qo td 0y
P = Q < 4 2 4 a + 2 d Q.+2x r Q (3-5)
z2z XX 2z er rz Qdd Z %2 %% xd zZ Z ‘'Xr
+ 2 rz dz er + xzz Qx + rzz Qr + dzz Qd
P = Q X2 + Q r2 +Q d2 +2x d Q .+2x_r_ Q
gg XX g rr g dd g g g 'xd g 8 “xr

+ 2 + + +
Todg Qar T Xgg QG FTge O T4, Q

where xg s Xp s X, denote partial derivatives of the transform
coordinates. Substitution of (3-5) into (3-1) gives a transformed

wave equation for a source free region of the form!

2

2 2 1 2 2 1 2 2 2 1 2
- = - = + -
Qxx( X, + x 52 X, ) + er( Ty +or .vzrz) Qq (dg +d 52 dt )
+2Q (xd +xd - l'—-x d )+2Q (xr +x1r =~ i X Tr. )
xd® Tg g z z GZ tt Xr- “gg z z ;2 tt
(3-6)

1 1
- —— + _— ——
+ 2 Qrd( rgdg + rzdz 62 rtdt ) + QX( ng X . 62 Xt )

1 1 _
+ Qr( rgg'+ T2z ~ gf'rtt ) + Qd( dgg + dzz ~2 dtt ) = 0



Computing the required frame derivatives we have

Substituting

(3-7) and (3-8) into (3-6) gives

or

3(g,z,0) | O b0
2

ad _2x 1, (1+ 4x )1/2
9(g,z,t) v2d v v2d2
1,  x s 2t x

rx (L +4x>/viaD) /2
vd(d - z/v)
For the second partials we have
2

2T - 05050
9 (g,2z,t)

3%a (L+ax’/v2a®y S
2 - 2 3 05 =55
07 (g,z,t) v (d-r/v) vodT(d-r/v)

32x _ 3rx + 12x3r .0 -
2 3 2 3 25° ’
8 (g,z,t) v d(d_r/V) d (d_r/v) v

+ XY , (2_+l§x2)
vd (d-r/v) vd

(3-7a)

(3-7b)

(3-7¢)

(3-8a)

(3-8b)

(3-8c)

25
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d 1 4x
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If we assume V = v = constant equation (3-9) becomes
2
d (1 + = )
v d 2x 2
+ Q. + = + 20
4(d—r/v) XX rr vd “xr v ‘rd
Q 2
ST (15 v g (T o (319
v (d-r/v) vd dv™ (d-r/v)

Equation (3-10) is the transformed wave equation which controls the
behavior of moveout corrected wave fields. Since the only assumption
made in transforming the wave equation was the constant velocity
assumption, equation (3-10)models all possible wave effects regardless
of their relevance to the problem of interest. With an eye toward
deleting terms which deal with phenomena not central to our application,

we will discuss some of the terms in equation (3-10).



Consider the first order terms QX and Qd . In the high frequency
limit they are small compared to the remaining second order terms. We
will delete both of these terms using the high frequency assumption that
gradients of the wave field are more important than gradients of the
coordinate system. While it is difficult to discern the wave phenomenon
suppressed when the Qx term is neglected, the effects of neglecting
the Qd term are fairly apparent. The Qd term increases the amplitude
of the wave field by an amount proportional to inverse travel time, but
it has little or no effect on phase. Neglecting Qd , therefore, is
nearly equivalent to neglecting amplitude changes due to geometrical
spreading.

The final term we consider is the er term. Unlike thewfirst
order terms, the importance of er is dependent on the earth models
one wishes to be able to handle. If the earth is plane layered we
expect the moveout corrected wave fields recorded at the earth's
surface to be the same as those recorded at depth. Thus, for a plane
layered earth we have Qr = er = 0 . Recall that moveout correction
approximately models the behavior of reflections even when the earth
is only approximately layered. Because of this, moveout corrected
data recorded over a nearly layered earth will be only moderately

dependent on receiver depth. In this case, since Qr is small and

Q. >>Q

r » one might neglect er in favor of Qr . We shall adopt

rr

this small dip assumption and delete er from our downward continua-

tion equation. Deleting QX ’ Qd and er we get
2 2
X v d 4x
X = - -4 4 3-11
d %t r g 7 (1+535)Q (3-11)

(d-r/v) v d xx
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Comparison of this development with Claerbout 1970 and 1971 shows that
deletion of er will yield an equation which models only upcoming
waves. The earlier work also indicates that simply dropping er
will limit the range of accuracy of the resulting equation to dips of
less than 15°. Claerbout 1971b gives economical procedures for
extending the range of accuracy of the continuation equation to include
reflector dips up to 45°. Claerbout and Johnson 1971 and also Riley 1975
give computer algorithms which can be used, with some modifications, to
solve equations like (3-11).

Using methods similar to those shown here, Claerbout andDoherty 1972
derived an equation for downward continuing profiles. Expressed in

the coordinates used in this thesis,their equation (equation 49) is

=Y d 2 -
+ er 8 ( d-r/v ) Qxx (3-12)

X
d er

The only difference between equations (3-11) and (3-12) is the lack

of the —%22 dependence of the QXx coefficient in (3-12). We find
that thevabsence of this dependence in the published equation seriously
degrades its performance for large offset data. In the earlier work it
was felt that the % er term might be important because its

coefficient was first order in x . Here we find that downward continued
wave fields are only weakly dependent on this term.

To put these comments on a firmer ground, we shall consider an
example. As before, we shall use the point scatterer as our investiga~
tive probe since it is the most general reflector. Figure 3-4 indicates
the recording geometry for the point scatterer synthetic profile we
will use. Figure 3~4 shows ray paths only for the shallowest point

in the synthetic data. Taking the angle between the actual ray paths and

28
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the ray paths assumed in the moveout correction as a measure of dip, measurement

on 3-4 shows that data recorded in that geometry fall within the 15°

dip assumption made in dropping er . The top left frame of figure

3-5 illustrates the surface synthetic profile data after they have been
moveout corrected according to equations (3-2) (the effects of geometrical
spreading and wavelet stretching due to moveout correction have been
suppressed). To a viewer familiar with the section geometry, the most
remarkable characteristic of this frame is that the dataare not symmetric
about the scatterer position. A look at the transformation equations
(3-2) shows that symmetry should only be expected when the scatterer

is directly under the source. The fact that this asymmetry exists should
alert us to the possibility that insights gained from experience with
sections may have to be modified somewhat if they are to be valid for

profiles.

Frame 3-5b shows the same data after migration with the zero order

terms (in x) of equation (3-11). That is with

d 2

= y 1 -
er T8 ( d-r/v ) Uex (3-13)

An equivalent equation was used with much success on zero offset sections
in the Claerbout-Doherty paper. Frame 3-5c shows the data migrated with

the zero and second order terms from (3-11). That is with

2
v 4x d 2
Q = -5 (1+ ) ( )7 Q (3-14)
d 8 v2d2 d-r/v

r XX

Frame 3-5d shows the data migrated with all the terms in (3-11).
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Fig. 3-5 Cont'd.

correction. Frame b shows the data of frame a after migration

with equation (3-13). Frame c¢ shows the same surface data after

migration with equation (3-14). Frame d shows the same data after

migration with equation (3-11). On the basis of these frames we can
conclude that profiles can be migrated with good accuracy by an
equation of the form

by a2
v2d2 d-r/v XX

v
er - §'( 1+



Since the aim of migration and downward continuation is to obtain a
moveout corrected profile which is a reflectivity map, the migrated data
of figure (3-5) should resemble point scatterers. Because we are
dealing with waves, we expect a focus rather than a point. In general,
the size of this focus will depend both on the predominate wave length
of the source wavelet and on the angular bandwidth of the initial
conditions.

Obviously, frames (¢) and (d) are much better approximations

to focuseéhihah (gj; However, frames (c) and (d) are vé?§‘§§£§1£f. On
2

the basis of this observation, we conclude that the —%—2 QXX term is
vd

required for migrating data of reasonable offset, while the §-er term

is not. Note that the only noticeable effect of the er term is an almost

undetectable increase in the asymmetry of the foci . Since we know that any

estimate of the reflectivity of a point scatterer should be symmetric

about the point scatterer, inclusion of er seems to move the data in

the wrong direction. Part of the asymmetry of the migrated data is due

to the asymmetric moveout function. However, this contribution is

small since the foci are distributed over a narrow band in x and the

moveout is essentially constant across this band. Most of the asymmetry

results from the biased nature of the angular bandwidth of the initial

conditions. Although the receivers in the array are distributed equally

along the x axis, the angular bandwidth of the data is not. Since

the angular bandwidth of the data is narrow for midpoints to the right

of the scatterer, the focuses of 3-5 are wide on the right. The asymmetries
in 3-5 occur because the appearance of the subsurface depends a great

deal on the direction from which it is illuminated and the position

from which it is viewed. The most familiar example of this kind of

effect is the phases of the moon. Although illumination always comes
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from the same location, the relative position of the observer changes
during the month and thus the appearance of the moon also changes
during the month.

Because a multi-offset section is constructed from a large number
of profiles, we can make some predictions concerning section continuation
on the basis of our work with profiles. We should expect that
first order terms like QX and Qd will be unimportant because they
deal with low order effects like geometrical spreading. Also, we should
find that directional derivative terms like er will control source-
receiver location directivity effects. The result of their inclusion
in a continuation equation will probably be a minor asymmetry in the

migrated data.



