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Chapter 3. The Two-Dimensional Forward Problem

Introduction

In this section we will relax the one~dimensional assumption made
earlier and consider a two-dimensional model of the subsurface.

As before, we will choose to neglect shear waves and absorption of
the waves.

Under these comparatively modest restrictions the scalar wave
equation completely describes the behavior of the seismic wave fields.
In addition to primary reflections, implicit in the wave equation are
the predicted effects of geometrical spreading, moveout, diffraction,
and multiple reflections. Through finite difference solutions to
the wave equation we shall model these phenomena, paying particular
attention to diffracted multiple reflections.

The impetus for simulating the reflection problem with the wave
equation stems largely from observations of field data. Diffraction
hyperbolas and focused regions on the time section are common and
distinguishing features of wave propagation. When they may be
identified as primary reflections, the true shape of the reflector
may be deduced through migration. Migration of primary reflected waves,
either using the wave equation (Claerbout and Doherty, 1972) or
geometrically (Peterson and Walter, 1974), is a well understood
technique to the explorationist. The contribution of multiple
reflected waves is less than well understood except in unusually ideal
subsurface geometries. Their identification on field data usually
relies on association of the diffraction features with undiffracted
portions of the seafloor and pegleg multiples. More often though,
the wave phenomena is less obvious. In one case, repeated focusing

and defocusing on a rough seafloor leads to lateral incoherence in
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the high order multiples. Depending on whether or not we choose to
model this energy it is regarded as signal-generated-signal or signal-
generated-noise. Whereas, on the other extreme, multiple reflections
off a dipping surface leads to systematic shortening of the reverbera-
tion period. The virtue then, of wave equation simulation is
that we include diffracted multiples as a physically deterministic or
predicted part of our model rather than a statistical or systematic
departure from it.

In this section we consider the forward problem, that is; given
the 2-D spatial distribution of reflection coefficients, compute the
reflected wave field observed at the earth's surface. We will first
develop the equations for separately propagating up and downgoing waves,
then the finite difference formulation for solving them in the computer,
and finally, synthetic examples. In chapter 4 we will consider the
practically important inverse problem, that of deducing the reflection

coefficients from the waves.

Continuation Equations

To begin with, we will formulate the problem of simulating the
wave equation in terms of upward and downward traveling waves. More
precisely, we will separate the wave equation into two separate Partial
Differential Equations (PDEs): onewhich describes the propagation of upcoming
waves and another for downgoing waves. This is done for a number of
different reasons, not among the least important is simply the conceptual
aid of thinking in terms of up and downgoing waves. Secondly, by
splitting the waves we may define local coordinate frames which
propagate with the two solutions. For the reflection seismology

geometry the propagation is generally collimated about vertical paths.



By perturbing the solution along such paths we reduce much of the pure
translation the PDE has to do. It makes little sense to use a wave

equation to move energy to a position which can approximately be

predicted by a well-chosen coordinate frame. The pay-off of this practice

comes in the ability to propagate a relatively large distance for the
same cost as a small distance. Thirdly, by separating the wave fields
the coupling between the two components becomes an explicit relationship.
This coupling, defined by the reflection coefficients of the model,

may be modified in order to selectively synthesize all or any of the
classes of multiple reflections. Finally, and of primary importance,

is that separation of the wave field into up and downgoing parts is of
fundamental importance to the inverse calculation.

Thus, we are led to consider means of splitting the wave equation.
Rather than attempt a rigorous mathematical separation, we will use a
numerical technique due to Claerbout (1970). The method involves
transforming the wave equation into a coordinate frame such that the

waves of interest become slowly varying functions in one of the trans-

formed coordinates. 1In such a frame the unwanted solution may be
discriminated against by a low-pass filtering operation in the appropri-
ate coordinate. Since we are interested in computing both solutions
simultaneously yet separately, two transformations will be required.

In the field we record or sample the reflected wave field as a
function of the profiling or in-line coordinate, x and time, ¢t .
To extrapolate the component solutions separately along the wave path

we introduce two separate transformations of the time coordinate.
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Normally the wave field is recorded at the earth's surface, but imagine
a horizontal line of geophones positioned at some fixed depth along the
z—-axis. Referring to Figure 3-1, this location is chosen to be a short
distance above a reflecting interface. Time in the frame at the left
is referenced to the initiation of the surface disturbance. At some
time after the shot we record the passage of the downgoing wave, D .

A short time later we record the reflected upcoming wave, U . Such
would be the observations in an absolute time frame. As the geophones
were moved up toward the surface the two waves would diverge. D would
end up at t=0 , while the primary reflection U would end up near

the bottom of the frame.

The two transformations to the right attempt to predict this
vertical translation based on the receiver depth, 2z and the wave
speed v . The new coordinate frames remain fixed in space relative
to the absolute frame. However, time is now a function of position.

In the center frame, when an observer moves in the -z direction

time t will seem to go slower. Moving with precisely the wave speed
time stands still. Thus, the same upcoming wave, as observed in the
center frame, does not change very much as it travels up to the surface.
It appears on the frame where =z equals the depth to the reflector.
When it appears is the two-way travel time we predict it will arrive

at the surface. Likewise, in the frame at the right, when an observer
(receiver) moves downward time will also seem to run slow. For a down-
going wave departing the surface at t=t"=0 it would remain near the
top of the frame as it propagated downward. The earliest possible
downgoing wave would be represented at t'=0 . Other waves departing
the surface would appear on the frame at t''=t and remain in approxi-

mately that position.
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Figure 3-1. Time response at buried receivers due to a surface disturbance .

For a horizontal line of receivers positioned a short distance above a
reflector we first record the passage of the downgoing wave D . A

short time later the reflected upcoming wave U is recorded. 1In the
surface arrival frame the upcoming wave appears at the two-way travel
time. 1In the surface departure frame the downgoing wave is at t"=0 .

As the receivers move up to the surface, U and D diverge in the fixed
frame, but U and D remain stationary as viewed in their respective

relative time frames.



These two frames appear, then, to be well suited for describing
waves propagating at moderate angles to the vertical. The surface
arrival (U) frame is good for upcoming waves, while the surface
departure (D) frame is good for downgoing waves. The term "good"
is directly related to the ability to extinguish the unwanted solution
and model the desired solution. In the U-frame the upcoming wave
energy is shifted toward k;=0 , Where k; is the vertical wavenumber
measured in the transformed coordinates. Similarly, downgoing waves
are shifted toward k;=0 in the D-frame. Waves in the opposing
directions are conversely shifted to rapidly varying functions of z .
On this basis, we may distinguish the waves of interest as shifted

toward kz=0 as measured in either frame.

The two-dimensional scalar wave equation in cartesian coordinates

is

~2 B
PXX + Pzz - 1/v Ptt = 0 (3-1)

With the wave equation in this form we are implicitly assuming that
density gradients may be neglected compared to velocity variations.

The upward (surface~arrival) transformation is given by

x' = x
z' = z (3-2 a,b,c)
t' = t + z/v

and the downward (surface-departure) transformation by

2 = VA (3"3 a,b,c)

ct
I

t - z/v
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The frame velocity V¥ 1is initially taken to be constant. Once
having settled on a particular coordinate transformation, or in this
problem two transformations, the next step is to express the wave
equation in the new coordinate frames. First we make the statement

that the wave field is invariant under a coordinate transformation.

P(x, z, t ) =U(x', 2", t" ) =D(x", 2", t") (3-4)

Although equation (3~4) may seem paradoxical at first, in view of the
fact that we are trying to separate the waves, at this point U and
D merely represent different dependent transform variables. That is,
we have the possibility of expressing the total wave field in either
frame. Shortly we will make the numerical approximation which accomplishes
the separation. We will first develop equations for propagating the
separate solutions in homogeneous regions where, of course, they
uncouple. Later the coupled equations for inhomogeneous regions will
be developed.
First consider the upcoming transformation. The chain rule for

differentiation, using equations (3-2), gives

axx P = ax'x' 4) (3-5 a)
- =2
att P = Bt't' U (3-5 ¢)

Inserting these into the wave equation yields

- =2 ~2
UX'X' + Uz'z' + 2/v Ut'z' +( 1/v° - 1/ ) Ut't' =0 (3-6)
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Further, defining
) ] "'2 3 | '2
e(x', z') A (F°/3@x",2")°-1) (3-7)

as a measure of the excursion of the medium velocity from the frame

velocity, we have the wave equation expressed in upcoming coordinates.

Ugrye = - v/2 Uor e/2v Uprpr - v/2 LU (3-8)

In this frame the waves of interest are shifted toward zero vertical
wavenumber. This is strictly true in homogeneous regions along vertical

paths. Thus, to extinguish all downgoing waves in equation (3-8) we

]

are led to drop the term proportional to ki. , namely Uz,z

Upryr = - v/2 Urpr + el/2v LA (3-9)

Note that in dropping this term we have also implicitly set the
transmission coefficient to unity. This is just as we require, since
the waves exactly uncouple only in homogeneous media. When we later
recouple the up and downgoing waves reflection and transmission coeffi-
cients will be included. A better approximation results if we use
equation (3-9) as a trial solution from which we may estimate Uz, 1 s

z

for equation (3-8). Thus, integrating equation (3-9) over t'

- t! -
U, = - V2L, + e/ U, (3-10)

and differentiating with respect to 2z' we arrive at an estimate for

Ufz' which is first order in z' .

- t! - -
U, , = -v/2 nyxvzv + € 1 / 2v Ut' + e/2v Ut'z' (3-11)
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For uncoupled solutions we require that ez, = 0 (since € = const for
homogeneous media). Inserting equation (3-11) into equation (3-8) we

obtain

- -2 t! -
(1+¢/4) Ut'z' =~ v/2 Ux'x' + vo/4 Ux'x'z' + g/2v Ut't' (3-12)

t! . . .
The new term, U, , , , provides better accuracy in propagating off-

X'x'2z
axis ( = 1% relative velocity error at 45° ) waves than equation (3-9).
A discussion of this type of approximation may be found in Claerbout
(1971a). The angular bandwidth we need consider is data dependent,
i.e., upon the source/receiver geometry and the subsurface dip.
Neglecting this term limits consideration to waves propagating within
about 15° of the vertical axis, a narrow beam approximation.

Next, let's consider waves in the downgoing transformation of

equations (3-3). Again using the chain rule,

axx L ax"x" D (3-13 a)
_ - =2

azz P = ( aznzn - 2/v at"z"+ 1/v at"t" ) D (3-13 b)

att P = St"t" D (3-13 ¢)

Inserting these into the wave equation gives
= - ~2
DX"X" + Dznzn - 2/v Dt"z" + ( 1/V2 - 1/v ) Dt"t" =0 (3-14)
or

D mn_n = ;/2 Dxllxll - 8/2\_, Dt"t" + ‘_7/2 DZ"Z" i (3_15)

Now, dropping Dz"z" will have the desirable effect of extinguishing

all upcoming solutions, whereupon equation (3-15) becomes

Dywnw = ;/2 DX"X" - €/2v Dt"t" (3-16)
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a first order equation in z" for propagating downgoing waves. A

similar equation to (3-12) may likewise be derived from the estimate
- t" - -
Dznzn = v/2 DX"X"Z" - e/2v Dt"z" - EZ" / 2v ‘Dtn . (3-17)

Again, to obtain the uncoupled downgoing solution, set ez" = 0 and
insert (3-17) into equation (3-15).
- =2 t" -
(1+¢€/4) Doy =+ v/2 Dot 7 /4 D gy = e/2v Dympn (3-18)
Thus, we have a pair of equations (3-12, 3-18) for upward and downward
continuation of the separate uncoupled wave fields. In cases where the

narrow-beam approximation holds we may use for upward and downward

continuation

(1+€/4) Ui, - v/2 U0 F el2v Uprpr (3-19a)

(1+€/4) D =+ v/2 Donn = e/2v Dynpn (3-19b)
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Reflected Waves

Having developed continuation equations for separately computing
up and downgoing waves in homogeneous regions, we now face the interesting
prospect of including inhomogeneities. In arriving at equations
(3-19 a,b) all possible reflections were suppressed in our effort to
separate the solution. However, where reflectors exist the waves are
coupled. Furthermore, their superposition at every point in time and
space must equal the total wave field in our original wave equation.

That is, now making the statement
P(x,z,t) = U(x',z", t'")+DE", 2", t") (3-20)

is equivalent to coupling the up and downgoing solutions. The procedure
is to express the total field, composed of U + D , in the relative time
frames, then identify and subtract the homogeneous solution for the
oppositely traveling wave. This will leave the transmitted and reflected
waves for one-way propagation.

Consider first the upcoming transformation from equations (3-2 c¢)
and (3-3 c) we have t"=t'-2z'/v . Through the description (3-2)

we transform the waves
P(x, 2z, t)=0U&", 2", t") +D(', z', t'-2z"/v ) (3-21)

in the wave equation to upcoming coordinates, which after carefully

keeping track of the independent variables, results in
[ U(t") +D( t'-2z"/v Mo * v/2[ U(t')- D( t'-22"/v Y (3-22)

~e/2v[ U(t")- D(t'—ZZ'/\-z)]t,t, + v/2[ U(t')—D(t'—zz/G)]z.z. =0
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The time dependence has been explicitly written to emphasize the shift
that must occur in computing a downgoing solution on an upcoming frame.
Equation (3-22) contains both up and downgoing reflected and transmitted
waves. If we simply subtract off the homogeneous equation for the down-
going wave [ equation (3-18)] we will leave the reflected, inhomogeneous,
contribution of the downgoing energy. Doing this we have

Upn n(t') + v/2 U v o (E1)- e/2v Uprpr (E1)+ V/2 Uit = (3-2%)

- - - -2 t! -
v/2 Dz,z,(t'-Zz'/v)-+€/4 Dt,z,(t'—ZZ'/v)-—v /4 DX,X,Z,(t'—Zz'/V)

The right hand side, using the previously derived estimate for Dz'z' of
equation (3-17), reduces to - ez,/4 Dt.(t'—2z'/§) . Further,

using the previous estimate for Uz'z' » equation (3-23) becomes
1 ~ ] =2 t' ] - '
(1 + €/4) Ut'z'(t ) =~ v/2 UX,X,(t Y+v /4 Ux'x'z'(t ) +e/2v Ut,t,(t )
= e /AL UL (e + D, (£ -22' /5 )] (3-24)

Thus, we have an equation for propagating the upcoming waves through
inhomogeneous regions. Comparing equation (3-24) to (3-12) we see
that the inhomogeneous contributions are an upward reflected downgoing
wave, - ez,/4 Dt'( t'-2z'/v ) , and a transmission effect
- ez,/4 Ut,(t') on the upcoming wave.

Similarly, the downgoing solution may be computed by inserting

the composite wave
P(x, z, t ) =0U(", 2", t"+22"/v ) + D( x", z", t" ) (3-25)

into the downgoing transformation of equations (3-3) to give the
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wave equation
[ D(E™) + UE"+22"/¥)] wom = V/2 [ D(E™) =UE"422"/9) ] o
zt X X (3—26)

+ g/2v [D(t")-—U(t"+Zz"/§)]t"t” - v/2 [D(t")-—U(t"+2z"/§)]z"Z" =0 .

Again, subtracting off the homogeneous equation for the upcoming wave
[equation (3-19 a)], and using the estimates (3-10) and (3-17), leaves

the inhomogeneous downgoing equation
- -2 t" -
(l+€/4) Dt"z"(t") = v/2 DX"X"(t") +v /4 Dx"X"Z"(t”) -€/2v Dt"t" «"
= e/ [ DL (E") + U (£ + 2277 ) ] (3-27)

The inhomogeneous source terms are the downward reflection of the upcoming
wave, - EZ"/4 Ut"(t" + 2z"/v) , and the downgoing transmission loss,
- EZ"/4 Dt"(t") . The narrow-beam equivalents to equations (3-24)

and (3-27) are

(I#e/b) Uy o (E") = =V/2U_, (") +€/2v U, 4 (t")

_ (3-28 a)
= Ezv/4 [ Ut'(t') + Dt.(t'—2z'/v) ]

(1+e/4) Dt"Z"(t") =+\_7/2 Dx"X"(t”) - 8/2\—! Dt"tll(t") (3-28 b)

= €,u/4 [ DLn(E") + U (t"+22"/v) ]

As a final simplification, consider letting the frame velocity v
vary spatially. When v approaches v(x,z) the correction term att
vanishes as does the correction (1+¢€/4) to the diffraction velocity.

Expressing the z-derivative of equation (3-7) in terms of a velocity

derivative yields
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2.
_2 2 v v
e /b = =1/43 (V /¥ &,2z) -1) = z
Z z ~3
2 v
or
- ez/4 = (1l+¢) v, /2v . (3-29)

Thus, letting v = v(x,z) the excursion, € , vanishes and equations

(3-28) may be rewritten, dropping the primes on x and z , as

Ut,z(t') =-3v/2 Uxx(t')+\~rz/2\7[ Ut.(t')+Dt,( t' -22/% )] (3-30 a)
Dt"z(t") =+v/2 Dxx(t") +\~rz/2x7[ Dt,.(t") +Ut,,( t"+22/v )] (3-30 b)

The final result is a pair of coupled equations for propagating the
separate solutions through velocity inhomogeneous regions. The coupling
is now an explicit relationship prescribed by the vertical velocity

gradient.
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Transmission Losses and Intrabed Multiples

In the previous section equations for propagating the coupled up
and downgoing wave fields were obtained including both reflection and
transmission coefficients. Appending the appropriate initial value
and boundary conditions specifies the problem for simulating surface
reflection seismograms from complex reflector models. However, in many
situations of practical interest we may choose to make additional
simplification of the problem statement.

The first aspect concerns the inclusion of transmission coefficient
effects in the finite difference calculations. Initially consider a
layered, one-dimensional reflector model. For plane waves passing through
plane layers conservation of energy yields a round-trip transmission

N

2
loss factor of 1l (1-—ci) where ¢y is the reflection coefficient of
i=1

the ith interface. The amplitudes we may expect to see at the surface
(due to direct transmission to a particular reflector and back) is
therefore a monotonically decreasing function of travel time which is
independent of frequency. Calculations made without including transmission
coefficients should be qualitatively similar to calculations including
the loss. Quantitatively, the adjustment to amplitudes is then a
simple positive scale factor dependent on travel time. In the forward
problem we are given the reflection coefficients and may directly compute
the scaling function to model transmission losses.

However, the interesting point is that the relationship between
the primary and corresponding multiple reflected wave amplitudes is
not altered by neglecting the transmission coefficients. This becomes

important in approaching the inverse problem of trying to predict and
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subtract multiple reflections utilizing relative amplitude information.
This was illustrated in the example of the 1-D algorithm which was
derived without reference to transmission effects. For a strictly
one-dimensional geometry the transmission coefficients are unimportant
in modelling and inverting multiples. We may expect that in somewhat
less restrictive geometries the error associated with excluding
transmission losses in the calculation may be negligible. Clearly,

in modelling seafloor multiples transmission effects are zero. 1In
those cases where the transmission coefficients are important, the
transmission terms in equations (3-30) may be simply included by

the finite difference method of the following section. This results in
a slightly more complicated algorithm but adds little cost to the
computations. In the subsequent numerical development the transmission

terms in both equations (3-30a) and (3-30b) will be dropped.

Additionally, we may choose to neglect the very-long-delay intrabed
multiples on the basis of amplitude. This is particularly appropriate
for modeling marine data where a disturbingly large amount of multiple
energy arises from reflections involving the sea surface and seafloor.
For a seafloor of reflectivity €1 and a typical major interface with

reflection coefficient £

2 (where €, > ¢

1

€1 >> €, ) we may rank in order of decreasing amplitude the classes of

9 and commonly

multiples:
- bi
-- seafloor peglegs 0 ( nve? 1’82) e
o
—-— seafloor multiples 0 ( g? ) E
her
0 —
-- structure-structure 0 ( €, ) £
@
-— long-delay intrabed 0 ( EZn—l ) 4
2 small
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where the order, n represents the multiplicity of paths. With the
belief that long-delay intrabeds are of negligible amplitude relative
to seafloor multiples and seafloor peglegs, we will omit them from the
calculation.

Since the coupling between the up and downgoing waves in equations
(3-30) is explicit, the modification suggested above is easily accomplished
by dropping the GZ/ZG U._n term in equation (3-30 b). Of course the
upcoming waves remain coupled onto the downgoing equation at the free
surface. This will be handled separately by the boundary condition at
the free surface, 2z=0 . Thus, neglecting long-delay intrabed multiples

and direct transmission losses we have the following initial-boundary

value problem:

- ~ pan . ~ _

Ut,z(x,z,t') = - v/2 Uxx(x,z,t')-kvz/ZV Dt,(x,z,t =2z /v) (3-31 a)
0<z<v t'

Dt"z( X, z, t" ) =v/2 DXx (x, z, t") (3-31 b)
z, t"> 0

D( x, z=0, t"=t ) = - U(x, 2=0, t'=t ) (3-31 ¢)
t>0

R(x, t ) = U(x, z=0, t'=t ) (3-31 4)

U(x, z, t" gz/v) = 0 (3-31 e)

D( x, z=0, t'"=0 ) = E (x) (3-31 £)
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where the two-dimensional reflection seismogram R(x,t) is defined as
the upcoming wave observed at the surface, and E(x) is the initial
distribution of the surface explosion. Thus, given the surface shot
geometry and the two-dimensional distribution of reflectors defined

by Gz(x,z) / 2v(x,z) equations (3-31) provide the mathematical
description of the forward procedure for developing the reflection

seismogram R(x,t) .
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Finite Difference Formulation

Through finite difference approximations to the partial differen-
tial equations (3-31 a) and (3-31 b) we shall develop an algorithm for
obtaining the up and downgoing wave solutions in velocity inhomogeneous
media. The particular finite difference scheme to be used will be analogous

to that of Crank-Nicholson. Let us discretize the coordinates as follows:

x=jMA&x , z=kAz , t'=n"At , and t" =" At ;

(3, k, n', n" integers ) such that U(x,z,t') = U(jAx, kAx, n'At)

Thus, we denote the approximations to

\J "

U(x, z, t' ) as UE 3 and to D(x, z, t" ) as D
b

T hroughout the following, the convention will be that when any index

is absent the reference is to all values along the implied coordinate.

—iwAt
(53

Defining the unit-delay operator Z = and also the unit-

shift operator W = éiszz simplifies the difference notation.
That is,
2o, = o™t g wer, - ®
kaj k:j ksj k_l’j )

The centered finite difference approximations to the first derivatives

are

§
~ 2 _ 2 (1-W) -
3z Az Az (14W) (3-32 2)
Gt 2 (1-Z)
9, = — = = ==L (3-32 b)



and for second differencing in x

2 n n n
$ U’ . - 20U . +U .
3 v X Un - k,j-1 k,i k,j+l (3-32 ¢)
XX (Ax)z k,3 (Ax)2
The velocity gradient is approximated by
Gz v(x,z) - 6z v _ v(x,z) - v(x,z-Az)] (3-33)

2 v(x,z) =~ 2 Az v Az[v(x,z) +Vv(x,z-Az)]

From which we are led to definetheconstant density reflection coefficient,

c, as
com A %Y L 1362 - amte) | (3-34)
’ 2v [ v(x,2) + v(x,z-Az) ]
Thus, the model is represented as C, ., in index notation. Using the

k,]

finite difference approximations of (3-32 a, b, ¢) and (3-34) we obtain

the discrete form of the upcoming equation (3-31 a).

§ &, ' ~ c, . ~
z t' . n v 2 _n' k,j n'-2kAz /vAt
= U, =- —3§ U |+ § , D, (3-35)
Az At Tk, j 2(Ax)2 x  k,j AzAt "t' Tk, j
Letting Az = X?§£ and a = X—égé% we obtain
8(Ax)

_ - 1 1 — L

Q-z) A-W) ' s 2t g0 (1-2) n'-k (3-36)

a+z) (1) Yk,3 x Yk,j x,3 (1+z) Ck,j

In order to further simplify the notation and additionally, since we
wish to concentrate on the end effect in the (z,t') plane, we will

write the second space differencing in x of equation (3-32 c¢) as
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2 n'

% Uk

2 n' '

8  Uk,2 T O}
. = - 5 for j=1,2,...,J (3-37)
. (Ax)

2 n'

Gx Uk,J

where T 1is a tridiagonal matrix with the elements ( -1, 2, -1 )
1

1
along the diagonal. Thus, in terms of vectors UE and DE along

the x-coordinate, equation (3-36) may be expressed as

n'-k

X (3-38)

(1-z) (1-w) UE' = (14Z) (A+W) aT U§'+ 1/2(1-2) (1+W) ck D

Let us now define an upward source term which is the shifted downgoing

wave multiplied onto the reflection coefficients

! é n'_k ]

s’li C. D for n' > k (3-39)

In terms of source waves, equation (3-38) becomes

n'

n'
K + 1/2(1-2) (1+W) sk (3-40)

]
(1-2) (1-W) U} = (142) A+0) aT U
and, rearranging, we have the matrix equation
n' n' n'
[I-aT] (1+ZW) Uk -~ [I+aT] (Z+W) Uk - 1/2(1-2) (1+W) Sk = 0 . (3-41)

Likewise, the finite difference approximation to equation

(3-31 b) for the downgoing waves is

St"Gz

o' v 5 2 _a"
At Az i

D, .
k,j

(3-42)

40
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Using the centered difference approximations of (3-32 a,b) we have

1-2)a-w) a" _ 2 ot
@) () Pk, i a 8" Dy ;

n

(1+2) (1+W) aT DE

nll _
(1-Z) (1-wW) Dk =

13 "

[I+aT] (142ZW) DE - [I-aT] (W+2Z) DE = 0 (3-43)

Let us now examine the (z,t') plane of the upcoming wave field.
Recall that the x-coordinate has been absorbed in the matrix notation
and it is therefore important to keep in mind the implicit third
dimension in the calculations. Each cell in Figure 3-2 represents an
end-view of the wave field looking along the x-axis. The column of
cells at k=0 (z=0) 1is the upcoming wave at the surface. By our
definition, this is the reflection seismogram R(x,t) recorded with
receivers at the surface. The other point of interest is the diagonal
line of cells representing the first arrival trajectory in (z,t') of a
downgoing wave exiting the surface at t=t"=0 . Above this diagonal
the upcoming waves must vanish since a reflected wave cannot exist
prior to the first arrival of the downgoing wave. This is incorporated
in the initial conditions for the upcoming waves in equation (3-31 e).
The region of interest for the source wave field S is similarly
restricted to the same triangle. Prior to the first downgoing arrival

n' n'-k _

n'< k , Sk = Ck Dk = 0 . At the surface we will require that the

. . A . X
sources vanish, i.e., C0 = 0 since reflections at the free surface are
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Figure 3-2. Upcoming and source wave fields observed in the (z,t')
plane. Normal to this plane is the x (profiling axis). The
upcoming wave equation propagates waves across the inner triangular
region up to the surface. Above the diagonal both U and S
vanish prior to the first downgoing arrival t'"=0 (n'=k) . The
reflection seismogram is defined as the upcoming wave field

observed at the surface.
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handled separately by the boundary condition (3-31 c¢). Along the
first arrival trajectory n'=k primary reflected waves are generated

by the interaction of D0

K with the reflection coefficients. Thus,

all multiple reflections originate due to sources inside the triangle
SE', 0<k<n' ; i.e., from downgoing waves exiting the surface at times
t" >0 .

The upcoming and downgoing wave propagators of equations (3-41)
and (3-43) may be thought of as two-dimensional (matrix) convolution
operators or filters acting on four neighboring cells in the (z,t')
plane of U, S and in (z,t") of D , respectively. Identifying W
as a unit backward-shift in z and Z as a unit time-delay, equation

(3~41) may be represented as

Jasz k k+1 k k+1

t" n' (I-aT) —(I+aT) n'| -1/2 -1/2
®u - ®s=0 (3-44)

n'+1 |- (I+aT) (I-aT) n'+1{ 1/2 1/2

The symbol (D denotes the two-dimensional matrix convolution where the
2 x 2 operators are laid-down on corresponding cells in the U and
S (z,t') planes. Similarly, equation (3-43) may be represented as

the operator

> 7 K K+l
t" n" —(I+aT) (I-aT)
®D = 0 (3-45)
a"+ 1 (I-aT) | -(I+aTl)

acting in the (z,t") plane of the downgoing wave.
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Depending on the direction of the calculation there are four possible

unknowns that may be solved for or directions to move with either (3-44)

n' n'+1

or (3-45). TFor example, knowing S and the cells Uk s Uk , and

Un' ight att t to det i Un'+l by solvin
4] Ve might attempt to determine U, ., y g

n'+1  _ n' n'+l n'

[I-aT] Uk+l = [I4+aT]( Uk+l + Uk ) = [I-aT] Uk

(3-46)
n'+l n'+1 n' n'
FL20S T A ST T Sy T S )

However, as Claerbout and Johnson (1971 ) point out such a direction is
definitely unstable, similar to attempting polynomial division with a

1
. . . . n
non-minimum-phase polynomial. This is also the case for U, unknown.

k

This mathematical predicament is a result of violating causality by
attempting to propagate a wave in an unnatural direction. That is, the
differential equation (3-31 a) and its approximation (3-44) are valid
only for propagating waves upward when time runs forward. It is therefore
not surprising that, with equation (3-46) trying to push upcoming waves
downward while time runs forward, we should encounter numerical
problems.

There are two allowable directions for the computations to proceed
for both the upcoming and downgoing operators. They are directions in

which the unknowns are multiplied onto the matrix [I+aT] , guaranteed

stable numerically and causal physically; specifically:

] "
o + s DE+Il (with time going forward) and

D (with time going backwards).



45

In the forward problem we restrict interest to propagation in the <+t
sense.

In order to best illustrate the steps involved in the forward
calculation, let us consider in detail one cycle in the algorithm.
Assume that the model C is prescribed for all space, and the surface
disturbance E 1is given. Assume that the seismogram R has been
computed out to and including n = 3 . Referring to Figure 3-3
the free surface boundary condition gives us the values for the cells at
the left-hand (z=0) side of the downgoing grid. With the operator

(3-45) we may downward continue these waves from surface cells
1 2 3

( £ , dO s d0 , dO ) to fill out the grid. The next step is to shift
the time axis t" dinto the t' frame as per t' = t"+ 2z/¥ or
in sample space n' =n" - k . This downgoing wave, referenced in the

upcoming system is then cross-multiplied onto the known reflection

coefficient ( €15 Cos Cgs Cpsnee ) cells generating the upward source
n'
terms Sk .

These reflected waves are finally upward continued to the surface
with the operator (3-44) and the new row (cell T, ) 1is developed on
the reflection seismogram. The cycle continues by reinserting this
surface arrival, after an appropriate 180° phase shift, back into the
downgoing calculation.

Thus, expressing the initial-boundary value problem of equations
(3-31) in terms of finite differences yields the following numerical
algorithm for the forward calculation of two-dimensional reflection

seismograms.
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Initial cond:

Uu = 0, all n',k

D = 0, all n",k# 0
0 _

DO = E

[I+aT]DE = [I-aT] (D] ~+D

for k=n', n'-1, n'-2, ..., 0

n'_ n' n
[I+aT]Uk = [I\aT](Uk+l + Uk
- 1}2( sty g2
k k+1
n' _ n'-k
where Sk = Ck Dk

Boundary cond:

n n
R -

U0
n' __ n'
Po =Yg

a"-1 n"
k-

1

-1
)—[(I+aT)]Uk+l
n'-1 _n'-1

=Sk T Sk )

. n'"-1 and k = n'+n"

)- [I+aT] D

n''-1

k-1

n'-1
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(3-47 a,b,c)

(3-47 d)

(3-47 e)

(3-47 £,g)
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2-D Gating Techniques

The number of numerical operations involved in propagating waves
from the first arrival diagonal up to the surface is obviously propor-
tional to the width or depth of the region spanned. Thus, as we move
to later time on the seismograms we find ourselves faced with a growing
computational procedure. For propagation through source free regions
(with the homogeneous continuation equations) we may largely overcome
this expense by taking large Az steps. However, where we have non-
zero reflectors interacting with non-zero portions of the downgoing wave
we must proceed with Az equal to model sampling rate E%E
If we take a lead from the one-dimensional algorithm, we recognize
that a certain amount of economizing gating may also be done for two
dimensions. Therefore, we wish to delineate those areas in the (z,t')
plane of S where we either know S to be zero or assume it to be
negligible.

Certainly we have, in the forward problem, a priori knowledge
about the S(z,t') plane by prescribing the model. In modeling marine
data we may identify the seafloor and use the fact that no reflectors
exist in the water path to exclude some of the sources in (z,t'")
Referring to Figure 3-4 we set Sk=0 for k<<le where le
corresponds to the depth to the seafloor.

Next consider the short-diffraction-path multiples, i.e., those
waves which eventually become trapped in the water layer. These
include both returning deep reflections (short-diffraction-path
peglegs) and simple seafloor multiples confined to the water path. If

we gate-in the seafloor reflector, say bounded by N k<N g s> we

15 2

encompass all of the sources S necessary to model all multiples of
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Short-path- Long-path-
Z(EZ last last

k . .
<-———-Sk = primaries

S =0 \\ l\
\ ||f?

Nig Npg Nig  Nog
Short-path-last Long-path-last
peglegs and sea- peglegs generated
floor multiples here

generated here i

Figure 3-4. Gating arrangement in the (z,t') plane of S for discriminating

between long and short-path multiples due to an initial plane wave

source. Sk = 0 in the water path k<N Short-path-last structure

1s °
peglegs and seafloor multiples are generated in the gate N < k< N

1s 2s °

Long-path-last peglegs are generated by the interaction of the down-
going multiples with the structure reflectors. Thus, SE' # 0 for
n'-—N12<]£<rﬂ —N22 where Nll and NZK encompass as much of the
downgoing wave as might be considered significant. By delineating
non-zero regions of the source plane S(z,t') the homogeneous upcoming
equation may be used with large Az steps to propagate waves

economically across source-free regions.
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this class. On the other extreme we have the long-diffraction-path
multiples. These include those waves which reverberate one or more
times in the water layer prior to entering the subsurface. These are
somewhat tricky to pin down on the (z,t') plane since this depends
on the particular distribution of shots modeled. But for a plane wave
source E(x)=1 the downgoing wave consists of the initial source at

t=t"=0 followed by zeros until the first seafloor reflection exits

the surface, N1L=NlS . Therefore we may exclude, for a plane source,
S for n'—NlL< k<n' . Recognizing a certain degree of arbitrariness,
we may choose the long-diffraction-path gate NlL to N2L of figure

3-4 to encompass as much of the downgoing reverberations as might be
considered significant. With this gating arrangement we approximately
model the long-path class of multiPles.

In the remaining inner triang;lar region structure-structure
multiples are generated. For some practical situations we may be
led to neglect these arrivals on the basis of amplitude. While the
initial object of gating the calculation in the §S(z,t') plane was
economy, we realize additionally the benefit of being able to selectively
model those multiples of interest. That is, by modifying the S
plane we may separate time coincident arrivals at the surface into

distinct multiple classes. This separation will be illustrated in

the numerical examples.
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Synthetic Examples

In this section we will use the finite difference algorithm to
simulate the 2-D reflection seismograms due to several reflector models.
To begin with, the models are simplified to consist of point scatterers,
and edge diffractors. Although the algorithm is valid for any number
of complex-shaped reflectors, the simple models are best for illustra-
ting and understanding diffracted multiple reflections. In any case the
practical restriction is the wave angle.

For all but one example the calculations were made with a normally
incident plane wave source E(x)=1 . Additionally, the diffraction
velocity was taken to be constant in each case. The simplest model
which well illustrates all the free surface multiples consists of two
spatially separated point reflector§: Referring to Figure 3-5, Frame
(a) is the depth model with the ray paths drawn for the two pegleg paths.
Since the incident source is a plane wave, the waves do not begin to
diffract until the first reflection off of each point. Thus, the
multiple path involving interaction with the deeper scatterer first
(dashed lines) will undergo less diffraction relative to the other path.
Due to this difference it becomes important to distinguish between two
different types of pegleg multiples; short-path-last and long-path-last.
Such a classification is valid for any order of pegleg reflections.

Frame (b) illustrates the arrival times for the primary paths and
pegleg multiples as determined by tracing rays. Simple multiples
involving just the free surface and a single scatterer were not traced.
Their arrival times are identical to the primary hyperbola, displaced

in time. Frame (c) is the actual model C(x,z) that was used in the
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C(x,2) c R(x,1) d

Figure 3-5. 2-D reflection seismogram of two point-diffractors in a constant
velocity material due to a plane wave source. Frame (a): ray-paths
for the long-path-last (solid line) and short-path-last (dashed line)
pegleg multiples. Frame (b): ray travel-times for the primary and
pegleg paths only. Frame (c): reflector model consisting of two
point-diffractors of -1 reflectivity. Frame (d): computed 2-D
reflection seismogram. The vertical is 1:1 , however due to the
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Figure 3-5 Cont'd.
plane wave source all diffraction hyperbolas approach asymptote
tangents of 0.5 instead of 1.0 for a point source. Waves
propagating at angles greater than 30° were attenuated by numerical
viscosity. This geometry best illustrates the separation of the
arrivals for the two different peglegs ( Pm ). The long-path-last
multiple (with travel-time minimum under the right scatterer)
undergoes a longer diffraction path (hence less curvature on its
hyperbola) relative to the short-path-last wave. The difference in
diffraction curvature of the two paths is proportional to the vertical
separation of the scatterers. Reflections off the rigid-wall boundary
condition in X may be noted on the primary arrival of the deeper
scatterer. Calculations of this size grid (70 x 350) take about
a minute on an IBM 360/67.
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calculation. Frame (d) is the 2-D reflection seismogram R(x,t)
calculated with the finite difference algorithm. In the calculation
waves propagating at angles greater than 30° to the veg;ical were
attenuated with numerical viscosity in the difference/équations.

This accounts for the tapering of the diffraction hyperbolas beyond this
limit.

This calculation clearly illustrates the separation of the two
types of peglegs at t=Pm . The long-path~last arrival, having a
travel time minimum over the deeper scatterer, has been diffracted more
and hence is represented by a broader hyperbola relative to the short-
path-last arrival. The difference in curvature depends only on the
vertical spearation of the points. Comparison between the ray-path
travel times and the finite difference calculation is very good even
out to 30°. Since more complicated reflector shapes may be constructed
from point scatterers, frame (d) is the 2-D "impulse response'" for
diffracted multiple reflections due to two reflectors.

The next example is the situation of a flat seafloor overlying a
point scatterer. Referring to Figure 3-6, frame (a) is the reflection
coefficient model C(x,z) used in calculating the seismograms. Frame
(b) illustrates the two ray-paths for the first pegleg multiple. The
long-path-last multiple (solid line) reverberates in the water layer
without becoming diffracted. Entering the sub-bottom, it finally
diffracts off the point reflector and is recorded at the surface as the
narrow curvature hyperbola on the 2-D reflection seismogram R(x,t) of
frame (c). Directly beneath the scatterer the long and short paths are
time-coincident and constructively interfere to produce the high
amplitude arrival at the top of the pegleg hyperbolas. If the calculation

had been continued to include the second order peglegs we would expect
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R(x,1) c R(x,1) d

Figure 3-6. 2-D reflection seismogram for a plane, horizontal seafloor

overlying a single point scatterer. The source is a plane wave and the
diffraction velocity is constant. Frame (a): the reflector model

used in the calculation. Frame (b): ray-paths for the primary and
multiple reflected waves. The solid line is the long-path-last portion
of the pegleg multiple while the dashed line represents the short-path-
last arrival. Frame (c): the 2-D reflection seismogram R(x,t) calcu-
lated with the finite difference algorithm. In the lower third of the
frame we record two distinct hyperbolas representing the difference in
the amount of diffraction on the two pegleg paths. Beneath the scatterer
the arrivals are time-coincident, constructively interfering to produce
the high amplitude reflection. Frame (d) is R'(x,t) ; the seismogram
calculated with the same model, however with the gating arrangement such

that the long-path-last (narrow hyperbola) multiple was not computed.
Again the vertical exaggeration is 1:1 .

55
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to record three distinct hyperbolas with time-coincident tops.
Frame (d) illustrates the effect of gating the calculation in

the (z,t') plane of S . The ng—st gate encompassed the horizontal

18 728

was omitted. The resulting seismogram R'(ﬁ,t) then only exhibits

seafloor and the calculation in the long-path-last gate N, —N

the short-path-~last diffracted arrivals.

The opposite situation to the planar seafloor overlying a bumpy
subsurface reflector (a point-diffractor being the extreme case) of
Figure 3-6 is the geometry of a bumpy seafloor overlying a planar
structure reflector. Here we again take the extreme of a '"point seafloor'.
Referring to Figure 3-7 , frame (a) is the reflection coefficient model,
and frame (b) illustrates the long and short-path-last rays for this
geometry. In this calculation structure-structure multiples (i.e., the
simple multiple of the plane layer) were omitted by gating. Frame (c)
is the reflection seismogram R(x,t) computed including both pegleg
paths. The stubby appearance of the long-path-last (solid ray)
hyperbola is due to numerically attenuating waves outside the 30°
beamwidth. Theoretically the long-path-last arrival of this model is
identical to the short-path-~last arrival of the previous model.

Frame (d) is the reflection seismogram R'(x,t) due to the same
model, however, excluding the long-path-last multiples by the same
gating arrangement as for Figure 3-6 d . This represents the case
of a returning primary wave reverberating once in the water layer.

From these two models we are led to expect that the different diffrac-
tion path lengths represent distinct multiple processes in the presence
of appreciable seafloor or structure topography. A wave transmitted

a great distance into the earth, reflected back and trapped by the
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Figure 3-7. Reflection seismograms for a point-reflector overlying a plane
layer. Normally incident plane wave source and constant diffraction
velocity. Frame (a): the reflector model used in the finite difference
algorithm. Frame (b): ray paths for the long(solid) and short-path-last
(dashed) pegleg multiples. Frame (c): reflection seismogram R(x,t)
including both pegleg arrivals. Gating the calculation accounts for the
omission of the simple multiple of the plane layer. This represents the
extreme case of a bumpy seafloor overlying a smooth structure reflector.
Since waves at angles greater than 30° have been numerically filtered-
out the long-path-last pegleg arrival appears truncated compared to the
short-path-last multiple of Figure (3-6c). Theoretically they are identical,
however in this geometry the waves approach the angular cutoff at smaller
offset to the point scatterer. Frame (d) is the reflection seismogram
computed excluding the long-path-last waves. The gating was identical to
that used in Figure (3-6d). The vertical exaggeration is 1:1 .
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water layer, would be successively stretched and scattered by the
seafloor topography. However, depending on phe relative depth of the
seafloor and structure, this may amount to a small diffraction as
compared to the situation where the wave gets deformed prior to the
long travel path.

Figure 3-8 represents the case of a single plane interface
offset by a vertical fault. Frame (a) is the reflection coefficient
model and frame (b) is the computed seismogram due to a plane wave source.
Note that the branches of the edge diffractions for both primary and -
simple multiple reflections undergo a polarity change crossing the top
of the hyperbola. The back branches have the opposite polarity of the
horizontal wave. As the fault displacement went to zero the diffraction
would be extinguished. The pegleg arrival for this geometry consists
of a single diffraction hyperbola midway between the simple multiples.
Both pegleg paths have about the same total diffraction length and thus both
arrive simultaneously at each receiver.

Frames (c) and (d) are the reflection seismograms for the same
model, however the source was a point disturbance, E(x) = §(x-s) at
the surface, located to the left and right of the fault boundary. These
frames then represent non-moveout-corrected single-shot profiles. The
reason for the apparently wide pulse shape on the primary arrivals is
the superposition of two hyperbolas of differing curvature. One is the
normal moveout hyperbola of the flat interface reflection and the other
is the diffraction (marrow curvature) hyperbola off the fault boundary.
Due to the angular bandwidth of the shot numerous reflections off the

rigid-wall conditions are recorded, especially on the multiple reflections.
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Figure 3-8. Reflection seismograms due to a vertically faulted plane interface.
The vertical exaggeration is 1/2 on all frames. Frame (a): the reflector

model C(x,z) consisting of a faulted plane layer. Frame (b) 2-D
reflection seismogram including all free surface multiple reflections for
an initial plane wave source and constant diffraction velocity. Character-
istic of a 2-D edge diffraction is opposite polarity branches of the

hyperbolic arrival times. The back branches of primaries and simple
multiples have the opposite polarity of the horizontal wave. Since both
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Figure 3-8 Cont'd.

pegleg paths have equal diffraction path length the pegleg arrival is
a single hyperbola arriving midway between the simple multiples. All
hyperbolas in frame (b) approach asymptote tangents of 1/4 . Frames
(c) and (d) are the reflection seismograms for the same model, but

due to an initial point source E(x) = §(x-s) . Normal moveout
hyperbolas approximately overlap the edge diffraction hyperbolas (each
having different curvature) accounting for the smeared pulse shape at
wider offsets. Reflections off the rigid walls may be observed on the
multiples in all three seismograms.
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Figure 3-9 illustrates the geometry of an undulating seafloor

overlying a deep, faulted, dipping layer. Frame (a) is the reflection
|

coefficient model consisting of a seafloor af reflectivity 0.25 and
faulted structure of strength -0.01 . For display purposes a uniform
exponential gain of 36 db/sec. has been applied to both frames.

Frame (b) is the reflection seismogram computed for this model and
a plane wave source. The simple seafloor multiples are successively
stretched by the seafloor topography. The waves are focused in the
troughs and diffused on the peaks. The degree of focusing is a function
of seafloor curvature and increases uniformly from left to right. Note
the diffraction hyperbolas of the structure primary due to scattering
off the sharp fault boundaries.

Below the structure primary are the diffracted pegleg multiples.
Due to the increasing multiplicity of paths, the subsequent arrivals
decay at less than the exponential rate associated with the seafloor
multiples. These multiples assume both the slope of the structure
and the stretch of the seafloor topography. A large portion of the
intense diffraction associated with the peglegs is due to the long-
path-last (long-diffraction-path) arrival.

As a final example of the forward calculation, consider the case of a
highly reflective, rough seafloor. In Figure 3-10 the seafloor
model was a surface where the curvature or roughness increases away from
the center of the section. The resulting seismogram illustrates
diffracted seafloor multiples up to order 8. As the waves reverberate
in the water layer they are successively stretched by the irregular
seafloor topography. The more net stretch the faster the waves diffract.
Thus, the multiple waves become increasingly focused in the seafloor

troughs and diffused on the peaks. By the time of the fifth seafloor
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irregular seafloor. With each reflection the seafloor multiples
become more focused in the trough and diffused on the peaks. The

is an increasing number of possible path on successive pegleg arrivals
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multiple the process of focusing and defocusing adjacent portions of
the wave leaves almost no lateral coherence toward the edges of the section.
This illustrates the fact that even for moderate seafloor topography

there may be dramatic wave effects on the high-order multiples.

An important conclusion that we may draw from these examples of
the forward calculation relates to mapping subsurface reflectors. Where
we have two-dimensional structure there is the possibility of recording
diffracted multiple reflections, arriving in near time-coincidence,
having different curvature hyperbolas. Thus, it is impossible to
reduce two-dimensional multiples to one-dimensional multiples by a single
migration operation. Multiples, in general, may not be migrated as
primaries. With this fact in mind, we may expect to encounter difficulty
in applying the time-honored 1-D principle of time coherence as a means
of identifying and removing 2-D multiple reflections. A consistent
mapping of reflectors, including the information contained in the
multiples, must involve migration occurring simultaneously with the

prediction and elimination of multiple reflections.



