225

Estimation of a Two Dimensional Correlation Matrix (An Example)

- by John Parker Burg

11 June 74:

In the following, the covariance estimation principles discussed

in the first Stanford Exploration Report will be applied to a simple two

dimensional problem. It is assumed that a 2 by 2 array receives N

samples from a 2-D stationary process, i.e., the nth

spatial arrangement of

1n 2n

X X

3n 4n

and the 2-D correlation of the process is

We first form the 4 by 4 raw covariance matrix from the

*1n { Xln *on X3n le}

N XZn
1
=
N =1 X
n 3n
X

4n

L~]

sample has the

data by

se
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which is an approximation of the 2-D autocorrelation matrix

% o % 0 % 1 %11
% 0 % o %1 % 1
(2)
% 1 %11 % o % 0
%11 %1 % 0 %0 |

Of course there is no necessity for (1) to have the correct form, i.e.,
A=B=C=D, E=F and G=H . Thus, we will change (1) so that
it does have this form.

To begin, we estimate ¢0 0 by ( A+BHC+D ) /4 . We next estimate
¢l 0 indirectly by estimating the best coefficient, s , to predict
Xy from X, 5 X from x from x and X, from X3 5 i.e,,

2 1° %3 4

we minimize

N

2 2 2 _ 2
nzl [( Xln-SXZn) +(X2naSXln) +(x3n—sx4n) +(X4n Sx3n) ]
which gives us
2E + 2F 3
A+B+C+D

We can likewise estimate the coefficient, t , for ( Xy5 x3 ) and

( Xos X, ) and get

2G + 2H
= 22T en 4
t A+B+C+D (4)

At this point, the correlation matrix which we are building has

the form



227

— iy
1 2E + 2F  2G + 2H ,
A+BHCHD  A+BHCHD
2F + 2F N . 2G + 2H
ALBHCAD A+B+CHD A+B+CHD
( A )
2G + 2H 1 28 + 2F
A+B+CHD 4 A+BICHD
; 2G + 2H 2E + 2F L
A+B+CHD - A+B+CHD
b et

Also, our estimates so far have been between pairs of variables whose
correlations to any third variable have not been specified.

We will now determine the value of ¢q . In this case the correla-
X, and Xq with both Xy and X, have been specified and

must be removed. The residuals, normalized to unity, in predicting X,

tions of

and x

3

from Xq are

X, = 8X XB“tXl

2=*2:“:'_2"L and €y = T
A - s A -t

Likewise the normalized residuals in predicting X, and Xq from X,

are

X, - tx X, — 8X
3 4

5 = 2 4

— and S S .
2 vl - t 3 /i - s2

From symmetry, we see that the same coefficient g should be used to

cross predict (e,, €, ) and (6,, &, ) . In fact, from symmetry,
2 3 2 3

we note that the expected values of the two matrices

Xy {xl X, XB; X, {x4 Xy XZ;
X, and Xg (6)
x X

3 2



228

are the same and should be transformed into

1 s t
x2 % s 1 q . (7)
t q 1

Summing our sample covariance matrices corresponding to (6), we have

A+D E+F G+H
E+F B+C 21 . (8)
GHH 21 C+B

To get q , we shall operate simultaneously on (7) and (8) to
get the 2 by 2 correlation matrix of the normalized residuals and then

compare results. Post multiplying by

j— -—

. -t
/1-52 /-2

1
O — e
] i
ve get from (7)
0 0
2
1-s g-st 7")
A-s? Ji-2
q-s t l—t2
/ —
A-s? A-?
_— .




and from (8)

po

- s (AfD) + (E+F)

Ao

- s (E+D) + (B+C)
A=t

- s(GH) + 21

Y1l - 32

—

Premultiplying by

B -s 1
/-s2 /i-s?
-t
== 0
A-t?
L

we get from (7')

q - st
yh—sz) (1-t%)
L

and from (8')

229

- £ (A+D) + (GHH)

A -

-t (E+F) + 21

VR

- t (GHD)+ (C+B)
A -2

-

(8"

7"
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— —-
82 (A+D) - 25 (E+F) + (B+C) s t (A+D) —A.S (G+H) -~ t (E+F) + 21
1 - 52 /Ql—s ) (1-t7)
8"
st (AHD) - S(GHH) - £ (E+F) + 21  t2(AD) - 2t (G+H) + (B+C)
/?l—sz)(l~t2) 1 - t2

We can first note that the upper left term in (8") can be changed

by using (3) to replace 2E + 2F .

S2 (A+D) - s(2E + 2F) + (B+C) - 82 (A+D) - 52 (A+B+CHD) + (B+C) B+ C
2 2 :
1-s 1 -5s
Likewise, the lower right term becomes B+C . Thus, using our general

principle, the correlation coefficient from (8") is

St (A¥D) - s(GHI)- t(E+F) + 21
@+¢)  V(1-s%) (1-t%)

and from (7") it is simply

4 - st
J(1-s%) (1-t2)

Comparing, we see that we want

st (AHD) - s(G+H) - t(F+F) + 21T
B+ C

qg = st +
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Using (3) to replace (EtF) and (4) to replace (G+H) , we get

st (A+B+C+D) - —;— st (A+B+C+D) - % st (A+B+C+D) + 21

B+ C
or simply

qQ = T/ . 9

Surprisingly, this is the same answer as would be obtained if X and

x, were completely ignored.

A

We now turn to the problem of getting r . Here, we need to remove

both X, and X4 from Xy and X, - To predict Xy from X, and

X3 5 we will use an unnormalized prediction error filter given by
1 s t “‘ 1 - q2 1+ 2 stq - q2 - 52 - t2
s 1 q tq - s = 0 (10)
t q 1 sq - t 0

Dividing the filter coefficients by 1 - q2 would normalize the weight

on  x; to unity, but this will not be necessary to achieve our purposes.

Our full matrix that we are trying to get is

‘—l s t r.ﬂ
s 1 q t (11)
t q 1 s
T t s 1 _




Because of symmetry, we can reverse X5 Xys X

where the definition of the primed terms is obvious.

of (12), it will be sufficient to post multiply (11) and (12) by the

v

A+D
E+F
G+H

23

e

E+F

B+C

21

G+H

single vector

to get

and

1+ 2 st

r - 2 st

(l-qZ)A'
(l—qz)E'

(l—qz)G'

(l—qz)J'
e

G+H

21

B+C

E+F

q

+
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31
2J rA'
GHH | _ E'
E+F G'
]
A+D | | J

2 2
-q -s -t

rq2 + t2q + 52q
el

(tq-s)E' + (sq-t

)G

(tq-s)B' + (sq-t)I'

(tgq-s)I' + (sq-t)B’

(tq-s)G' + (sq—t)E'J

X

Gl

I'

B'

E'

J'

E'

A'

and sum (1) to get

(12)

Using the symmetry

(11")

(12")
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Premultiplying by { l—q2 tq-s sq-t 0 }, we get

(1+2stq - q2 - 52 - t2 ) (1 - q2 ) ar")
and
2.2 ., 2., 20
(1-q97)" A" + 2(tq-s)(1~-q") E' + 2(sq-t)(1-q") G
(12")
+ (tq—s)2 B' + 2(sq-t)(tq~s) I' + (sq—t)2 B!
Using 2E' = (A'+B'")s , 2G' = (A'4#B')t and 2I' = 2B' q , (12")
becomes

A’ [(l—qz)2 + s(tq—S)(l-qz) + (sq-t)(l—qz)t] +

+ B' [ s(tq-S)(l—qz) + (sq—t)(l—qz)t + (tq—s)2 + 2(sq~t) (tg-s)q
+ (sq-t)? ]

= A' (l—qz) [ 1 + 2stq - 82 - t2 - q2 ]

+ B' [ (l—qz)(ZStq - 32 - t2 ) + (tg-s)(tg-s + sq2 - tq )

+ (sq-t)( sq-t + tq2 -sq) ] =A (l—qz)[ 1 + 2stq - s2 - t2 - q2 ]

Thus (11") and 12") differ only by the factor A+D .

Premultiplying by { 0O sq~t tq-s l—q2 }, we get

(1-¢2) (t - 2st - rq> + t2q + s2q ) (11"")

and

2(sq—t)(l—q2)E' + 2(tq-s) (sq-t)B' + (sq—t)zl' + (tq—s)2 I’

2(tq-S)(l—q2)G'+ (l—qz)2 J' (2"")



234

Dividing (11"') by (11"), our correlation coefficient is given

by
r - 2sr - rq2 + t2q7+ szq
1+ 2stq - 52 -~ t2 - q2
Equating this to (12"') divided by (12"), we see that we
need

A'(l—qz)( r-2st - rq2 + t2q + szq )y = (@az2"y . (13)

Using 2E' = (A"+B')s, I' = B'q, 2G' = (A'"+B'")t, (12"') becomes

A" [ (sq-t) (1-q%)s + (tq-s) (1-q2)t + (1-q2)% I'/A" ]
, 2 2 2 2
+ B' [ (sq-t)(1-q7)s + 2(tq-s) (sq-t) + (sq-t)“q + (tq-s)“q + (tq-s) (1-¢“)t ]

Al (l—qz)[ szq - st + th - st + (l-qz) J'/AY ]

+ B'[(sq—t)(s—q28 + tg-s) + (tq-s)( sq-t + t - qzt )

+ (sq—t)zq + (tq-S)2 q ]

A" (1-q%) [ -2st + s2q + t2q + (1-q¢%) J'/A' ] . (12"
Comparing (13) and (12""), we see that

r = J'/A' = 23/ (A+D)

Again, this is the answer we would have reached if we had completely

ignored X, and x3 .

Our final transformation of (1) is simply
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- -~
1 2E + 2F 2G + 2H 23
A+B+C+D A+B+C+D A+D
2E + 2F 1 21 2G + 2H
A+B+C+D B+C A+B+C+D
(_A+BHCHD ) .
4 2G + 2H 21 1 2E + 2F
A+B+C+D B+ A+B+C+D
273 2G + 2H 2E + 2F 1
B A+D A+B+CHD A+B+C+D i

We note that using our general principles of covariance estimation
for this special problem are order invarient. I.e., we would get the
same answer independent of the order in which we calculated our correla-

tion coefficients.



