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Multichannel Maximum Entropy Spectral Analysis

In order to derive the multichannel maximum entropy spectral analysis
equations, we must first define the entropy per time step of a set of stationary
time series. If our N time series are statistically independent and
gaussianly distributed, then the entropy per sample of each channel isjust the
integral of the logarithm of its spectrum and the entropy per step for
all N time series is the sum of the entropies. Thus, the multichannel

entropy for independent channels is

N N
z g log Pn(f) df = S~ log I Pn(f) df = S log[det (P(£))]df , (1)

n=1 n=1
where P(f) is the multichannel power spectrum matrix. In this case
P(f) is N by N and diagonal with its diagonal elements being given
by Pn(f) , =1 to N . We will now show that the integral of the
logarithm of the determinant of P(f) 1is a reasonable definition for
the entropy of a general multichannel spectrum.

Suppose we have a set of N gaussianly distributed random
variables A with a general positive definite covariance matrix R .
If the variables were independent, i.e., if R were diagonal, then the
entropy of the set of variables would be the sum of the logarithms
of their variances, or equivalently, the logarithm of the determinant of
R . However, if the random variables are not independent, we can change
them to a new set which are independent by using prediction error filters.
For example, we can make our new set of variables be: +v_ ; the error

N

in predicting VN—l from vy 3 the error in predicting Vo
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from V-1 and vy o3 etc., until we finally get for our last new

variable the error in predicting v from all the other variables.

1
This set of prediction error variables will be independent and their
entropy has been defined. It is seen that this procedure is analogous
to that used to convert the correlated variables in a colored time
series to the independent variables of a whitened time series. 1In

matrix form, our "whitening" of the N by N covariance matrix looks

like

where D 1is diagonal with positive elements dn and U is the

solution of the equation below (shown explicitly for N=4 )

— — -
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x x 1 0 o o 4, *
* * *
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where * indicates an element to be solved for. The first column
of U 1is the filter for obtaining the least mean square error in
predicting vy from v o n=2 to N , etc. We note that |U| =1,
so that |D| = |R| . Thus, the logarithm of the determinant of the
covariance is invariant under the U transformation. This should
seem reasonable since the unity weight on the predicted variable of

the P.E.F. does not gain up the variable. Thus, since the U matrix

is reversible and does not scale the variables, one can believe that

it should not change the entropy. Using this result, if the multichannel

power spectrum matrix is not diagonal but is constant with frequency,
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its entropy will be given by (1). However, we want to show that
(1) is correct in general and to do this we call on multichannel
prediction error filters. An M long multichannel P.E.F. has a

matrix z transform of

_ 2 M
F(z) = 1+ A1 z + A2 z" + + AM Z

where the leading matrix is the identity matrix and Am , n=1 to

M, are N by N matrices. The M.P.E.F. actually consists of N
filters, where the nth filter predicts the next point on the nth
channel from the past multichannel data. Because of the unity weight
on the predicted point, the variables are not scaled and the entropy
should not be changed. The inverse of the M.P.E.F. is also physically

realizable and has the form
1+B, z+B,2z + «-- .

Just 1like the single channel P.E.F., the multichannel P.E.F. can
"whiten'" a multichannel time series, that is, convert the power spectral
matrix to a constant matrix (but not necessarily a diagonal matrix).
Likewise, since the multichannel P.E.F. is minimum phase, we find that
the z polynomial given by the determinant of F(z) has all of its
roots outside the unit circle. Thus, using the single channel theorem,

we have that

Slog | F(z)| df = 0

Now, if we have a multichannel time series with a constant spectral
matrix P and filter it with F(z) , we obtain a new spectral matrix

given by FT(z) P F(z) . However, we note that
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glog ]F’I—(z) PF (z)l df = Slog |F+(z)| df + glog |P| df

+ glog | F(z)| df = glog |p| af

Thus, the multichannel spectrum F+(z) P F(z) has the same entropy as
P . Since we can in general generate any multichannel spectrum by
applying a M.P.E.F. to a constant spectral matrix, we can now see
that (1) makes sense as the definition of entropy for any multichannel
spectrum.

The constraint or measurement equations that we shall deal with
are

SP(z)zmdf=<I>(m), m=-M to +M (2)

where &(m) will be recognized as the N by N cross-correlation
matrix at lag m of the multichannel time series. We note that (2)
consists of (2M+1)N2 equations. We thus need (2M+1)N2 Lagrange
multipliers, Fij(m) , where i, j specify the matrix element in the
mth equation. Our variation is thus taken over all N2 functions in

the spectral matrix P(z) to give

m
GS{log |p(z)| - I )\ij(m) [ Pij(z) z - @ij(m) ]} df = 0, or

i’j ’m

Qi.(z) +M o
g z [Tf’j(—z_)—l —m=Z_M Xij(m) z ](SPij(z) df = 0

1,]

where Qij is the cofactor of Pij(z) in the P(z) matrix. Thus

Qi.(Z) _1

T Tty @
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A(m) dis the matrix of
that if our constraint
possible to write

+M

L A(m)

m=-M

t -
where F (z) = FO + Fl

is an Mth order M.P.E

We then have
P "(z) =
F+_l(z) P—l

P(z) FT(Z)
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+M
Z A..(m) z" , or
m = ~M 3
+M
% A(m) z"  where.
m=-M

the mth Lagrange multipliers. We now assert

equations (2) are consistent, then it must be

m FT(Z)S F(z) ,

N
il

z + Fzz2 + e + FM z , F_=T1,

.F. and S 1is a constant power density matrix.

Ffi(z) S F(z) , or

(z) = S F(z) , or
= Fl@E) st
-1

Since F(z) is minimum phase, F ~(z) contains no negative powers

of z . Thus, the left

of 2z . Since
+ o
P(z) = X o(m) =z

- O

m T

hand side also cannot contain negative powers

and F (z) = z F =z s
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equality of the zero th power of 2z gives

M
z & (m) Fm = 5
m=0

-1

and equality of the rth power of z when r 1is negative gives

® (mrtr) Fm = 0.
m=0

Thus, specializing to the case where M=3 , we have the multichannel

prediction error filter equations

ad - d - [~ __1‘_l
8(0)  B(1) B(2) (3) I S
B(-1) 8(0) a(1) 2(2) F{ 0
- A (3)
8(-2) @(-1) @(0) &(1) Fg 0
3(-3) 0(-2) @(-1) o(0) Fg 0
hom - 3 - e =

We note that the square matrix in (3) is made up of our measured
cross—correlation values and that we can solve for Fn and S from

(3). The maximum entropy solution is then given by

pg) = Fl@ strE i)



