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Variational Methods for Waves in Two Dimensions
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THE GENERAL VARIATIONAL APPROACH
by John Parker Burg

The general problem that is being considered is the estimation
of a function P(x) from an accurate but incomplete set of facts
concerning various properties of P(x). The estimation procedure
involves choosing an extremal principle and then finding the P(x)
that satisfies the principle under the constraint that P(x) -

agrees fully with all knowledge about P(x) .

1. The General Equations

Let the variational principle be the desire to achieve an extremal

for the integral
S V[PX), x)dx . | (1) _

The information that is directly known about P(x) 1is contained in

the N equations
g G [P, x]ldx= v , n=1 to N. (2)

In both cases, x may be multidimensional and the integrals are over the
same specified space. -~
To solve this problem we shall use Lagrange multipliers, Xn

Thus we need that

GjiV[ P(x), x ] -

. .
S{V'[P(x),x]- T \)‘nGt"[P(x),x]}GP(x) dx =0 .
n=1

N
z

z Xn Gn[ P(x), x i} dx = 0 , or
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Thus an extremal is attained when
N
vV [PX),x )= % A G P(x), x } . (3)
n n
n=1l
The prime on V and Gn indicate the derivatives with respect
to P(x) holding the explicit dependence of V and Gn on Xx

constant. The Lagrange multipliers, An , are to be chosen so that

equations (2) are satisfied.

2. A Solution Procedure

The solving of (2) and (3) will in general require an iterative
solution technique. An iterative technique which will always solve

the problem in many important cases is given below.

Step 1: Starting with some set of values for An R
n=l to N, solve (3) for P(x) . This step
in itself may be a difficult problem since (3) 1is an

implicit function of P(x) .

Step 2: Using the derived P(x) , calculate the values of

the N integrals (2), i.e.,

g, - SGn[P(x).x]dx. (4)

1f g, = Yn for n=1 to N , then we have an
exact solution. Normally, however, 8, will not
be equal to - Y, and we will need to change the

An so that the 8, become closer to the Y,
To do this, we can write the differential of g,

with respect to the An as
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N Bgn
dg = zgrdks,n-l to N,
s=l 8

or in matrix form

- -
dg, H), By BN iy

dg, y = Hy, H,, Hou dxz , (5) -

. - - -

dey/  ["m M2 Han dhy

vwhere an - 3gn/3)\s . Letting €, " Y, = 8 »

one can estimate the change Akn in An necessary

to make 8, * Yn by solving the matrix equation

AA = H g (6)

where A\ and € are column vectors and H 18 the
square matrix in (5).
Step 3: Replace An by An + AAn and if the error vector ¢

is not small enough, return to Step 1.

To solve for Bgn/aA8 , one takes the partial derivatives of
(3) and (4) with respect to As to get

t | N ”"
Ve, x 1 Z® . ¢ (pe, x1+ A 6, [Pk ] T

aAa n=1 QX.
or '
G_ [ P(x), x] ~
Bgix) - 8 N

" N "
8 v [P®,x]1- %t )6 [P, x]
n=1
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and
og ' .
—n . 9P (x)
3". SGn [ P(x), x ] 3)‘3 dx . (8)-

Putting (7) into (8) we have

3 6 [P&), x 16 [ PG, x ]
n n 8
‘3_A_- - S " N " dx . (9)
8 VIP@,x1-Z A 6 [Px),x]

n=1

If we let
' N '
QP(x)] =V [P, x]1~- I A G[P,x], 10
n=1

we see from (3) that Q[P(x)] # 0 . From (9), we see that Q'[P(x)]
is the denominator in the integral. Now if Q'[P(x)] >0 for all
x , then we can make the powerful assertion that the matrix H 1is
positive definite. This is easily proved by regembering tha£

B, " a;n/'axs and that H 1is positive definite if and only if

g? Ha>0 when a¢ 0, where the superscript T indicates the

transpose. Using (9), we see that

N [ N L
I a G[P(x), x])] I a G [P(kx), x ]
n n 8 "8
ETBE‘. - S n=}1 s=] i

(1] N [ 1]
V[PXx),x]- L An Gn [ P(x), x ]
n=1

or

N ' 2
L an Gn [ P(x), x ]}
d

»2? Ha = 5’§;n-1

X >0 »

Q [ P(x) ]
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if Q'[P(x)] 20 and a ¥ 0 since the integrand will be positive
for all x . If Q'[P(x)] <0 for all x , then H will be negative
definite. ‘

1f H is a definite matrix for all of our iterations, then wve
will always be able to solve equation (6). Furthermore, there are
iteration theorems which state that if H is a definite matrix, then
if there is a solution to the problem, the specified iteration procedure

will converge to that solution.

3., Variational Principles

In maximum entropy spectral analysis, the variational principle

is to find a maximum for

g fn [ P(f) ] df . (11)

As for most density functions, the usual constraint equations are linear
functionals in P(f) . That is, we know the values of integrals of

the form

W
2 G (£) P(£) df = Y, , m=l to N . (12)

In this case, equation (3) is
N

Rn'[P(f)] = 1 /P(f) = L ln Gn(f) . (13)
n=1

This is of course easily solved explicitly for P(f) as

1
R = T (14)
b An Gn(f)

n=1
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Equation (10) for Q'[ P(f) ] becomes -1 /Pz(f) and thus
Q'€  0 for all f and H 4is thus negative definite.

In looking at the variational principle (11), we see that
P(f) should be positive for all f since the logarithm of a negative
number is complex. However, a better argument is perhaps given by
(13) in which we see that if P(f) 1s close to zero, then En'[ P(f)]
is large and a small increase in P(f) will make an appreciable
increase in the value of the integral. Thus P(f) 1s driven away
from zero by the variational principle.

There are an infinite number of variational principles which

would make P(f) positive for all frequencies. One example is

SP(f) tn[P(f)] df .

Here
N
Q(P(f)] = &n[P(f)] +1 - L An Gn(f) = 0 , which gives
n=1
N '
P(f) =exp }y L XA_G_(f) - l} and Q (f) = 1/P(f) .
a=l ® D

Here we would wish to minimize the integral and we see that when P(f)
is small, a small increase in P(f) produces a sizable decrease in
the integral. We also note that H is positive definite.

Another example 1is

S Pa(f) df , where a<1l but a# 0.

Then N
| QUPE) 1= aP¥ () - L XA G (f) =0
n-l nn
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or

P(F) = 1 -

- ——

l-a

® |-

N
L A G_(f)
el ° 0

' L d
and Q = a(a-l1) p? 2(f) . Again we have a definite H matrix
and the variational principle repells P(f) away from zero.
A final example is a variational principle that involves f

explicitly.

1 1
S [P(f) Tt UM - B ) df

where U(f) 3 L(f) for all f . Here 1if we start with P(f) _

between L(f) and U(f) and try to minimize the integral under
constraints, P(f) will be repelled by both the lower and upper

boundaries.

4. Consistency and Usefulness of Measurements

Aéide from problems which arise from statistical uncertainties,
there are two fundamental questions that can be raised about a set
of measurements. One question is concerned with the results of the
measurements and the other with the measurements themselves.

To {llustrate the first question, suppose we measure the zero
and first lags of the autocorrelation function of some spectrum
and find that ®(0) =1 and ®(1) = 2 . Since we know that ®(0) > ¢(),
these measurement results must be inconsistent. Thus it is clearly
impossible to find a power spectrum which will be in agreement with
these measurements. In another case, suppose $(0) =1, Q1) = 0.5,

¢(2) = -0.1 and ¢(3) = 0.3 . Are these measurements consistent?
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This 18 a less trivial but still straightforward question to answer
since one only needs to check the corresponding 4 by 4 toeplitz
matrix for aeﬁi—poeitive definiteness. However, if we also threw
in the information that the power out of a filter with a complex

frequency response of Y(f) was 3, i.e.,

y _
i Y(£) Y*(f) P(f) df = 3,

then the question of consistency for the complete set of measurements
becomes quite difficult.
The solution to this question of measurement consistency can

be found by use of a variational principle approach. The reason is
that if the data are consistent, then there is at least one spectrum
which agrees with the measurements. If that spectrum is unique, then
it is the extremal spectrum for all variationmal principles. If there
is a set of spectra, which agrees with the data, then if the value
of an integral variational principle is bounded over this set, a
particular member of this set will be selected by the variation
principle. We can conclude from this that

1) If an extremal solution cannot be found that maximizes a
particular variational principle, but the constraints bound the maximum
value of the integral, then the data must be inconsistent. This
result is independent of the variational principle if it is bounded.

2) If one variétional principle has a solution, then any bounded

variational principle has a solution.
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The second question is about the measurements themselves, i.e.,
the.properties or charucteriétics for which numerical values can be
found. This question is inter-related to the boundedness of the
variational principle. To give an example, suppose that we know
the valueé of ¢(1) through ¢(10) but do not know the value of ¢(0) .
What is the maximum entropy solution for this set of measurements?

The answer is that there is no maximum entropy extremal since the set
of measurements cannot bound the entropy integral. One can always

add more white noise to the spectrum, i.e., make ¢(0) larger and
larger, without changing ¢(1) through ¢(10) . In this case, one may
object to the problem on the grounds that knowing ®(1) through

$(10) really doesn't tell us much about the spectrum. In fact,

any set of numbers for ¢(1) through $(10) are consistent if

we make ¢(0) 1large enough.

This example produces two observations:

1) Some sets of measurements may be missing a key characteristic
without which the measurements are incomplete.
2) A variational principle must be bounded by the measurement

set before it can be useful.



