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A TERRAIN NOISE SUPPRESSION FILTER FOR MAGNETIC PROFILES

by W. Scott Dunbar

Terrain noise is often a confusing factor in most potential field
surveys. For magnetic surveys, the correction can be made through the use
of Fourier transform techniques [1, 2]. These methods can also be used to
correct gravity surveys. The advantage of the technique in [1] is that it
includes non-linear terms.

It is also desirable to handle non-stationarity of the terrain noise.
One approach to this problem is through the use of communication theory.

A terrain noise suppression filter was developed by Clarke [3]. It assumes
that the terrain noise is a linear function of the topography. However,
through the use of short data series analysis techniques, it can be modified
to handle non-stationarity in the spectrum of the topographic and magnetic
profile. More study of the problem would undoubtedly reveal ways of
merging the non-linear analysis with the non-stationary analysis.

We can regard the magnetic profile m(x) as the sum of a signal
component, s(x) , due to the "target source" and a noise component,

n(x) , due to the shallower sources in the topography.
m(x) = s(x) + n(x) (1)

The noise model is linear in the topography, =z(x):

n(x) =5 g(x") z(x-x") dx' (2)

- 00

The kernel, g(x) , is to be estimated from the available data m(x)

and z(x)
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The cross~correlation between z(x) and m(x) is

[ee]

(bzm (XO) =j_002(x+xo) m(x) dx

Substituting from (1)

o) (XO) =J z(x+x0) [ s(x)+n(x) ]dx

-— 00

¢zs (XO) + ¢zn (XO)

Since the target is deeper than the noise sources, we can assume that
¢zs (XO) =0, i.e., there is no correlation between signal and noise.

Therefore, we only need to compute ¢ (x,) using (2):
zZn 0

o) (XO) =j Z(X+XO) dxj _ g(x') z(x-x') dx'

zn
— o0 —

§

-0

[o0]

g(x") dx' [ z(x+x0) z(x-x"') dx

=j g(x") ¢Zz(xo+x') dx!

Fourier transforming, g(x) is given in the wavenumber domain

sz(k) 1 *

(k)

z2

G(k) = [

where sz(k) is the cross-power spectrum of z(x) and m(x) and

Pzz(k) is the auto-power spectrum of z(x) . The star denotes the

complex conjugate. k 1is the wavenumber.
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Substituting (2) into (1) and Fourier transforming, the terrain noise

suppression is done according to

S(k) = M(k) - G(k) Z(k) (3)

Assuming that the noise is uncorrelated with the signal amounts to
limiting the analysis to geometries such as that in figure 1. Probably
the most serious assumption is that of stationarity in the spectral
estimates. A solution to this problem is to individually analyze pre-
selected portions of the profile over which the topographic noise can be
assumed stationary. These portions would probably be rather short and
therefore the spectral estimates and Fourier transforms would not have
much resolution in the wavenumber domain. However, the maximum entropy

spectral estimator [4] can be used to estimate Pzz(k) according to

P /W
N+1
P (k) = = (4)
22 n-l -i2mfAx
1+ I PEF, e J
. +1
j=1
where PEF = (1, PEFl, ceey PEFN ) 1is the prediction error filter of
length N and with power output PN+l . W 1is the Nyquist frequency

of the data and Ax is the sampling interval. The cross power spectrum
sz(k) can also be estimated by the maximum entropy method according

to

P k) = ¢C_ (k) -1i4qQ (k)

zm zm Zm

where sz(k) is the cospectrum and sz(k) is the quadrature spectrum.

sz(k) and sz(k) can be estimated according to
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Figure 1. Geometry suitable for terrain filter.
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_ 1 _ _
Cn@) = =L (B () =P () - P _(k)/2 ]
(5)
— —1 — —
Qn) = F=[ (P =P () -2 (k)/2]

where M is the number of data samples and

a(t) = x(t) + iy(t) b(t) = =x(£) + y(t)

Each of the quantities on the right hand side of (5) can be estimated
by (4). Paa(k) is computed by a complex form of the algorithm. See
[5] for a derivation of the preceding formula.

The prediction error filter is estimated by the Burg algorithm [6]
from the data alone. The algorithm is a tricky little devil to write and
its theory is probably not in the mathematical armory of most potential
field analysts. The algorithm for complex time series is given in the
Appendix.

Now that we have good resolution in the spectral estimates, we need
some way of obtaining comparable resolution in the Fourier transforms
M(k) and Z(k) . Since the unit distance prediction error filter PEF

is related to the unit prediction filter, PF, according to

PFi = PEFi+l

we can use PF to predict the samples of m(x) and z(x) out to greater
lengths. More points in the space domain means more resolution in the

wavenumber domain and thus the problem is solved. Since PEF is derived
from the data alone, it can be seen that no information will be added to

the data by doing this.
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The prediction to distance jAx 1is done either by constructing the
prediction filter for distance jAx and convolving it with the data or
by convolving the unit distance prediction filter with the data j times
each time incorporating a new point into the prediction scheme. The
original data is extended in both directions, leaving the profile in the
middle of the extended set. After applying the filter and transforming
back to the space domain, the filtered profile, S(k) , is retrieved
from the middle of the transform. Further details and proof of the above
statements are given in [4] and [7]. A listing of a subroutine which does
the prediction is given in the Appendix.

As stated before, the non-linearity can be handled by a somewhat
different approach using Fourier transform techniques. Parker and Hueshs
[1] compute the Fourier transform of the magnetization T(x) of a

magnetic layer of thickness h, according to

0
M(k) exp (]kl zZ_ ) o0 -2
TR = T 0 -z %L c_ (k)
GHg) [1 - exp(-|k|h )]V (k) n=1
270 0
where Cn(x) T (x) (Z(x))n > 2 is the measurement height of the
anomaly m(x) , UO is the dipole moment of the earth's magnetic field
and
V() = By (Z+1RK/ k| )My (24 iK/(|K] )
Here M0 is a constant unit vector in the direction of magnetization
and BO is a unit vector in the direction of the ambient field. Only

a few terms in the series are required for convergence. M. will

0

undoubtedly vary over the length of the profile. However, the data

extension methods could be used to analyze shorter portions of the data

for which MO can be assumed constant.
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Appendix

Subroutine CBURG computes the prediction error filter (PEF)

for a complex data series x . The inputs are:
X - complex data series with LX points
LPEF - desired length of PEF (<LX )

The outputs are

PEF - the prediction error filter
ED - the error power of PEF
FE, RE - arrays of forward and reverse prediction errors

NP - print option ( = 0 , no printed output )

The parameter LPEF can be chosen by looking at the curve of EP
versus the recursion number N for N greater than about 4 . A
drop in EP indicates a possible length of PEF . Several of these
drops will be found and each one could be tried. LPEF is still an
arbitrary parameter and reflects the underdetermined nature of the
problem of estimating a power spectrum of a process from a finite
length of data.

With this routine, all the parameters to compute spectra according
to (4) is given. For real data series all the complex operations reduce
to real operations and PEF is real.

Subroutine EXTEND extends a data set in both the forward and
reverse directions using the prediction filter (PF) derived from

PEF . The inputs are

X - real data series with LX points

PEF - prediction error filter with LPEF points. This array
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is changed to a prediction filter upon exit
NP - printoption ( = 0 , no printed output )
LEX - desired number of points in the extended data set. This

must be some integer multiple of LX greater than 1

The only output of this routine is EX , the extended data set.

The 1length of EX , LEX , depends on the resolution desired. Usually

LEX = 5 LX dis sufficient.
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SUBKOUTINE CBURG ( XyLXyPEF4LPEF EP4FEWRE,NF)
COMPLEX XALX)yPEF(LPEF) yFE{LX)yRE(LX)yCONJGSN,PEFH,FEH
LPF=LPEF-1

INITIALIZE ERRORS,ERRLOR PCWER AND PEE({])

EfF=0.

DG 1 I=1,LX

FELDY=X(])

RELI)=X{1)
EP=EP+X {11 %CONIGIX(I))
EP=EP/LX
PEFTL)=(les00)

[

COMPUTE PEF RFCURSIVELY

D0 6 N=2,LPSF
SN=(Gstg)
SD=43.
JS=LX-N+1

COMPUTE PEF(N), UPDATE ERKRCP PCWER

DC 2 J=1,J¢
SN=SN+FE(J+N-1) *CONJGIRELJ))
2 SU=SDHFE{J+N=T1) *XCCNJCUFE(J+N=1) )+RE(J)=CONJCIRE(I))
PEF{N)=-24+%SN/SD
EP=EpP*(1e-PcFIN)XCCNJGIFEF(N)))
IF(MsEQe2) 50 TG &

LPRDATE PREVIOUS COEFFICIENTS

KUP={N=1)/2+]

DO 3 K=2,KUP

L=N-K+1

PEFH=PEF(K)+PEF (N)*CONJGIPEF(L))

PEF(L)=PEF(LI4PEF (N)XCONJGIPEF{K))
3 PEF{K)=PEFH

LPDATE ERKORS

& DG 5 J=1,JS
FEH=FE( J+N-1)

FECJHN-1)=FZ (J+N-1)4PEF(N)*RE(J)
RE(J)=RELJ)+CONJGIFEF(N) ) *FEH
CONTINUE

NN
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C
C END OF RECURSICNyPRINT ALL DATA
C
IF (NPFQo0) RETURN
WRITE {(6,10) LX,(X{I),1=1,LX)
WKITE (&,15) LPEFy{PEF(TI)yI=1,LPEF)
WRITE (&,20) EP
NWR=LX-LPFF+1
WRITE (6,25) (F={1),I1=LPEF,LX)
WRITE (£,30) (RE(I)yI=1,NWR)
C & ko
10 FORMAT (%1%, INPUT DATA SERIFS: LENGTH=',I5//(2X,10F12.61))
15 FORMAT {///' PREDICTICN ERRCR FILTER COFFFICIENTS: FILTER LENCTH=

$ ',WI5//7(2X,10F12.¢))
20 FUORMAT {///' ERROR POWER=',1PF10e3)

25 FORMAT (///*' FORWARD PRECICTICN ERRORS'//712X,1CF12.€))
30 FORMAT (///' REVERCSE PRECICTICN ERRCRS'//(2X,10F1246))
C % k%o
RETULRN
END
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SUBROUTINE EXTEND (XyLX,PEFLPEF,EXyLEX yNP)
REAL X{(LX)yPEF{LPEF),EX(LEX)

C BURG PRECICTICN FILTER
LPF=LPEF-1 ’
BDC 1 I=1,LPF
1 PEF(I)==PEF{I+1)

PLACE X IN MIDDLE OF EX

OO

LEND={LEX~-LX)}/2
IX1=LEND+1
IXL=LX+LEND
J=1
DC 2 I=IX1,IXL
EX{I)I=X{J)
J=J+1

2 CONTINUE

FCRWARD PREDICTION

[aNeNe!

IFl=1XL+1

IFL=]I XL+LEND

OC 4 I=1IF1,I1FL

EX(1)=0.

DC 3 J=1,LPF
3 EX{II=EX{IV+PEFLJ)*EX{1I-J)
4 CONTINUE

REVERSE PRECICTION

2N aNe)

IR=1IX1

DO & I=1yLEND

IR=IR~1

EX{IR)=C.

BC 5 J=14LPF
EEXIRI=EX{IRI+PEF{JIREX{IRS])
& CCNTINUE

C WRITE LEX4EX

IF (NPoEQeO) RETURN
WRITE (€410) LEXy {EX{I)oI=1,LEX)
10 FORMAT (///°' EXTENCED DATA SERIES:LENGTH= *,15//
$(2X910F1246))
RETURN
END



