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Different Approximations to Vertical
Derivative Operators in Potential Problems

by Vincent E. Courtillot

With the study of magnetic anomaly profiles in mind, Le Moué&l
et al (1974) developed a simple analytic operator that allows one to
compute the continuation of a potential field recorded on a contour of
any shape. We shall only deal here with the two dimensional problem
and limit ourselves to a potential field recorded on a horizontal line,

taken to be parallel to axis Ox.The vertical axis is positive upwards

and called Oy (and not Oz , since we will need z for other purposes).

We will take the data sampling interval as unity ( Ax = constant =1 ) .

Let w =u (k, 0) be the set of data at integer values of x , for

y = 0 . The continuation formula of Le Moug€l et al (1974) is:

+ ei'rr(z—k) -1
u(P) = =Z—°° u - Im T2k (1)
where P(x,y) - with z=x + iy -~ is the point where continuation

is desired; this formula can be used for upward or downward continuation,
but will only be meaningful as long as one does not go below the sources
of the potential field u . (1) is essentially a convolution equation
where the infinite series {uk} is convolved by:

iz

a(z) = Im { E_Trz:_l } (2)

This function is analytic, reduces to the well-known sinc x function on

the Ox axis and goes to 0 as y goes to + . Thus u(P) is

se
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an analytic function of 2z and can be differenciated with respect to
either x or y . In particular, vertical derivatives up to any order
can be obtained; in the case of the first vertical derivative, it is

easy to show that:

+
= . ' = =
8y u = . E-_m U oap (at x =1y 0) (3)
with:
' ' k 2
ag = - T/2 , a, = [1 -G 1/ 1k for k£ 0 (4)

With the following definition for the Fourier transform:

¢(f) = I a e R fl<1/2568) =0, |£]>1/2
K
/ (5)
1/2 .
a, = J. G(f) e21Trfk af
-1/2

it is easy to show that the Fourier series for the a& is 2ﬂ[f| . If

we substitute the wave number kx for 2wf and introduce the Z wvariable

e—lkx (this Z should not be mistaken for the Z = x + iy corresponding

to point P ), we get the following result:
Ta Z = |k| (6)
When evaluating lkxl for computational purposes, the Z-transform

in (6) will have to be truncated. In order to have an idea of the

relative error due to this truncation, one need only notice that aﬁ
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_2 .
converges towards zero as k and that every other term is zero.
We can next obtain an expression similar to (3,4) for the second

vertical derivative:
u, - a (at x =y =0) (7)

with:

a" = w2/3 al = 2 DX/k% for k# 0 (8)

aﬁ converges as (—l)k:/kg , which means that with 10 terms in (7),

. . 2 . .
one will obtain an estimate of kx with a relative error on the order
of 17.

This can also be obtained by convolving the first vertical derivative

operator by itself, thus getting the Z~transform expression for

k2= |2nf]? -
X
La'.z% = k2 = 9 (9)
X k X yy
If we remember that we are dealing with potential functions
(9 + 9 = 0 ) we find, as could have been expected:
XX vy
2
k™ o= -0 10)

All operators considered here are exact, when the infinite series

{uk} is used and when the potential function u dis band limited in the

(-1/2, 1/2 ) range. If one of these assumptions fails, one only has
an approximate expression for the Z-transform of the operator. The

quality of this approximation can be judged from examples in Le Mouel



163

et al (1974).

Now, we can rewrite (10) as:

2
) = —T + X
X k#0 k

k+1
2Dk an
This expansion can be compared with one obtained from the following
relationship between BX , the differenciation operator, and dx , the

corresponding finite difference operator (Mitchell, p. 18)

8 2 2.2
BX = 2 arg sinh 7?— = GX —-—%—— 6X3 + 14 3 504 ... (12)
2% 3! 2% 51 %
By squaring this expression, one gets:
_ 1 g4 L 1 56
8xx - axx 12 6x + 90 6x *oee (13)

By replacing ze by ( AR 2+ 2z ) in (13), one hopefully finds the
coefficients of powers of Z in (13) to be identical to those in (11). The
usual procedure, when solving PDE such as the wave equation, is to
approximate axx with a truncation of (13) rather than (11); the one-term
and two-term truncations of (13) are the most common ones. It may be of
some interest to notice that when truncating (13) and expressing it as

a Z-transform k=§¢q aﬁ . Zk , the aﬂ are different from the aﬁ
(of course they converge towards the a; when N goes to infinity).

The difference between (11) and (13) is somewhat similar to the difference
that exists between the expansion of a function on an orthogonal set and
on a non-orthogonal one; in the latter case, the coefficients in a
truncated form of the expansion vary with the order N of the truncatiomn.
It is not obvious to me, right now, which truncation is to be preferred:

the preceding remark would tend to favor (11) where the aﬂ are exact,
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but use of (13) in previous SERP reports and in Claerbout's papers
obviously gave very satisfactory results.

Let us now return to the first vertical derivative operator; equation
(3) is one way of computing it but other ways can be found: one may, for example,
look for the roots of the Laplace equation axx +9 =0, vhichcanbeformally

yy

written in the following way:

o, = * 13, (14)

When applying these two possible operators to a complex potential

function Y = u + iv , and equating the real parts, one gets:

d_u =309 V (15)

Thus, in order to compute By u from the knowledge of the (uk) s
one can first compute v from u through a Hilbert transform operation
(this is simply a convolution with -1/mx, which can be computed with
the FFT algorithm), and then compute By u from (15), using any desirable
approximation of 8X ( see (12) ).
0f course, Vv can also be directly obtained from (1) through:
+ o eiw(z-—k)_

v(P) = z —up - Re {
k:—OD

1

m(z~k) (16)

It is easy to see that the use of (16) and of the exact ax in (15)
lead exactly to the single equation (3). In (3) the coupling between
u and Vv is not apparent, while it is apparent in (15).
Remark: the two possible solutions in (15) correspond to potential
fields going to zero either as y—>+» (sources in the lower half-space,

which has been assumed in order to be able to write continuation
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equation (1)) or as y-> - (sources in the upper half-space); this is
somewhat reminiscent of the separation between up and downgoing waves

in the case of the wave equation. One might hope to be able to use

the various approaches described in this note in order to obtain
different expansions and approximations of By in the case of the wave
equation. Unfortunately, it does not seem possible to find an equivalent

of (3) for that case. The wave equation for a monochromatic wave is:
d + 9 = -w c a7

which leads to the following solutions for 3

2
3 = + 121+ 5 /2
y - c w2 XX
(18)
W c2
x4+ im (159 e )
- c 2 "xx
2w

which, when applied to ¥ = u + iv , leads to the following equivalent

of equation (15):

2
= T W £ .
ayu = +°(l+2w2 It ) v (19)
which can be approximated by:
au::{'QV—?‘C_ v (20)
y c 2w xx

Thus only a "coupled" expansion analogous to (15) can be found, which has already been

widely used in the SERP report and in Claerbout's papers.
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