Migration Equations for Inhomogeneous Media
by Goran C. Starius

In this paper we will consider the equation $P_z = i(\frac{\omega^2}{c^2} + \partial_x^2)^{1/2} P$, where the velocity c is a function of x. By introducing a constant \bar{c} the equation can be rewritten as

$$P_z = \frac{i\omega}{\bar{c}} (1-L)^{1/2} P$$
, $L = -\frac{\bar{c}^2}{\omega^2} \partial_x^2 + 1 - \frac{\bar{c}^2}{c^2}$. (1)

Now let the operator L , with zero slope boundary conditions at the endpoints of a finite interval, have the eigenvalues $~\lambda_0 < \lambda_1 < \lambda_2 \ldots$ and corresponding eigenfunctions $~y_0$, y_1 , y_2 , \ldots We recall that $~\lambda_k = \text{O}(k^2)~$ and that for every square integrable function f the following holds

$$\int (f - \sum_{k=0}^{N} \alpha_k y_k)^2 dx \to 0 , as N \to +\infty$$

$$\alpha_k = \int y_k f dx / \int y_k^2 dx$$
,

As is easily seen the linear operator $(1-L)^{1/2}$ can be defined by

$$(1-L)^{1/2} y_k = (1-\lambda_k)^{1/2} y_k,$$
 $(1-\lambda_k)^{1/2} \ge 0, \lambda_k \le 1$

$$Im(1-\lambda_k)^{1/2} > 0, \lambda_k > 1$$

Now assume $P(x,0) = y_k$, then $P(x,z) = \phi_k(z) y_k(x)$, where ϕ_k satisfies $\phi_k^* = \frac{i\omega}{\overline{c}} \left(1-\lambda_k\right)^{1/2} \phi_k$. Since we do not care about exponentially decreasing solutions in z-direction, only eigenvalues $\lambda_k \le 1$ are of interest. Therefore, we can choose a polynomial or a rational function $R(\lambda)$ such that

$$(1-\lambda)^{1/2} \simeq R(\lambda), \quad \lambda_0 \le \lambda \le 1$$
 (2)

and replace $\left(1-L\right)^{1/2}$ by R(L) . This is of course reasonable because of

$$[(1-L)^{1/2} - R(L)] y_k = [(1-\lambda_k)^{1/2} - R(\lambda_k)] y_k$$
.

The monochromatic case. Assume ω in (1) has a definite value assigned to it and set $m = \omega/c$ and $\overline{m} = \omega/\overline{c}$ then the equation becomes

$$P_z = i\bar{m} (1-L)^{1/2}P$$
, $L = -\frac{1}{\bar{m}^2} \partial_x^2 + 1 - \frac{m^2}{\bar{m}^2}$. (3)

Let us now choose \bar{m} such that the smallest eigenvalue λ_0 to L is equal to zero. This choice is convenient since it means that (2) shall be valid for $0 \le \lambda \le 1$. If we want to restrict ourselves to simple functions $R(\lambda)$, rational approximations of first degree, for example, it may be necessary to decrease the interval to $0 \le \lambda \le A$, say, in order to get a reasonably good fit. This means that components of the form

$$y_k(x) \cdot \exp(i\bar{m}(1-\lambda_k)^{1/2} z)$$
, $\lambda_k > A$

in the solution P of (3) may not be very well approximated when $(1-L)^{1/2}$ is replaced by R(L). For constant velocity A = $\sin^2\theta$, where θ is the largest propagation angle from the vectical which is well treated. Now let μ_0 be the smallest eigenvalue to $-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} = -\frac{1}{2} = -\frac{1}$

The eigenvalue μ_0 to $-\partial_x^2 - m^2$ can easily and effectively be determined in the following way. Add max m^2 to the operator above

and replace the new operator by a matrix $\,T\,$, say. The smallest eigenvalue $\,\tau\,$ of $\,T\,$ can be determined by using inverse iteration

$$T y_{n+1} = y_n$$
, y_0 arbitrary

$$\frac{y_{n+1} y_n}{x} = \tau_n \to \tau \text{, as } n \to \infty$$

$$y_n y_n$$

The rate of convergence can be speeded up considerably by making so-called shifts. That is after a few iterations T is replaced by T - τ_n I and then the process is repeated. The approximation to μ_0 we get in this way is the last T value plus the sum of the shifts minus $\max m^2$. A detailed description and analysis of the method indicated above is given in a book by Wilkinson "The Algebraic Eigenvalue Problem".

Let us first choose $R(\lambda)$ as

$$R(\lambda) = \frac{\alpha - \beta \lambda}{1 - \gamma \lambda} ,$$

where α , β and γ are given for different values of θ in (Internal report, June 17, 74, G. Starius). Equation (3) shall of course now be replaced by

(1-
$$\gamma$$
L) P_z = $i\bar{m}$ (α - β L) P

or after making the variable transformation $P = Qe^{imz}$ by

$$(1 - \gamma L) Q_z = i \overline{m} (\alpha - 1 - (\beta - \gamma)L) Q.$$
 (4)

A discretization T of L can be obtainey by simply replacing ∂_x^2 by $(\Delta x)^{-2} \delta_{xx}$. Even if the velocity is discontinuous the approximation (T+ ϵ I) v= f of the boundary value problem Ly + ϵ y = f is of second order, at least in L₂-norm. See for example "A Mathematical

Analysis of the Finite Element Method" by Fix and Strang. The quantity $\varepsilon>0$ is inserted only in order to guarantee existence and uniqueness of a solution (the smallest eigenvalue of L is zero). The best way to discretize (4) in z-direction is probably by using a Crank-Nicholson scheme.

We will now consider a second degree rational approximation that is

$$(1-\lambda)^{1/2} \simeq \frac{A-B\lambda+C\lambda^2}{1-D\lambda+E\lambda^2}$$
, $0 \le \lambda \le \sin^2 80^\circ \simeq 0.97$

Suitable values of the parameters are given below together with the maximal error.

A B C D E maximal error
$$0.9993$$
 1.6613 0.6674 1.1714 0.2417 9×10^{-4}

The partial differential equation we now get instead of (3) is

$$(1 - DL + EL2) Pz = im (A - BL + CL2) P$$

which discretized in z-direction by using Crank-Nicholson's method becomes

$$[1-i\alpha A+(-D+i\alpha B)L+(E-i\alpha C)L^{2}]P^{n+1} = [1+i\alpha A+(-D-i\alpha B)L+(E+i\alpha C)L^{2}]P^{n},$$

where $\alpha = \overline{m} \cdot \Delta z \, / \, 2$. Now let $\, \beta \,$ and $\, \gamma \,$ be the roots of the algebraic equation

$$(E - i\alpha C)\mu^2 + (-D + i\alpha B)\mu + 1 - i\alpha A = 0$$
,

then the scheme can be written

$$(T-\beta)(T-\gamma) P^{n+1} = \rho(T-\overline{\beta})(T-\overline{\gamma}) P^n, \quad \rho = \frac{E+i\alpha C}{E-i\alpha C}$$

where we have replaced L by a discretization T. To make one step in the z-direction in the scheme above is equivalent to solving two tridiagonal systems of linear equations, namely

$$(T - \beta)Q^{n+1} = \rho(T - \overline{\beta})P^{n}$$

$$(T - \gamma)P^{n+1} = (T - \overline{\gamma})Q^{n+1}.$$

Finally we point out that it is possible to use the 1/12 trick in the scheme above.

The non-monochromatic case. The equation (1) will now be considered without any restriction on ω . Since $(1-L)^{1/2}$ shall be replaced by R(L) we must require that (2) is valid for λ such that

$$\inf_{\omega} \lambda_0 \le \lambda \le A \le 1 ,$$

where A is a constant whose meaning has been indicated in the previous section. By using the well-known variational principle

where y satisfies the zero slope boundary conditions, we get

$$\lambda_0 \geq \min_{x} \left(1 - \frac{\overline{c}^2}{c^2}\right)$$
, for all ω .

From (5) it is also easily seen that $\ \lambda_0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \omega^2$ and that

$$\lambda_0(+\infty) = \inf_{y} \frac{\int (1 - \frac{\overline{c}^2}{c^2})y^2 dx}{\int y^2 dx} = \min_{x} (1 - \frac{\overline{c}^2}{c^2})$$

A convenient choice of \bar{c} is therefore $\bar{c}=c_m=\min c(x)$ because then $\lambda_0(+\infty)=0$ and (2) shall be valid for $0\leq\lambda\leq A$.

Now let $R(\lambda)$ be a first degree rational function then (1) shall be replaced by

$$[1 + \gamma(\frac{c_m^2}{\omega^2} \partial_x + \eta(x))]P_z = \frac{i\omega}{c_m}(\alpha + \beta(\frac{c_m^2}{\omega^2} \partial_x^2 + \eta(x)))P$$

$$\eta(x) = c_m^2/c^2(x) - 1$$

and after making the variable transformation P=Q e $\frac{i\omega \alpha}{\overline{c}}$ z, where \overline{c} is a new constant we can choose later, and by replacing ω by i ∂_t we get

$$(1+\eta(x))Q_{ttz} - \gamma c_m^2 Q_{xxz} = c_m (\beta - \alpha \gamma \frac{c_m}{\overline{c}}) Q_{xxt} - \varepsilon(x) Q_{ttt}$$

$$\varepsilon(x) = \alpha (\frac{1}{c_m} - \frac{1}{\overline{c}}) + (\frac{\beta}{c_m} - \frac{\alpha \gamma}{\overline{c}}) \eta(x) .$$
(6)

Parenthetically we point out that if c is a constant and $\bar{c}=c$ then (6) is identical to the equation considered in (Internal report, June 17, 74, G. Starius). In the present paper we will only consider a simplification of (6), good for lower frequencies in x-direction only. Set $\gamma=0$ and integrate with respect to t then we get

$$Q_{tz} = \beta c_{m} Q_{xx} - \varepsilon(x) Q_{tt}, \qquad (7)$$

which corresponds to $R(\lambda) = \alpha - \beta \lambda$. The parameters α and β are chosen such that

$$E(\alpha, \beta) = \max |\sqrt{1-\lambda} - (\alpha - \beta \lambda)|$$

$$0 \le \lambda \le \sin^2 \theta$$

is minimized. If we are particularly interested in getting a good fit for small values of $\,\lambda$ (small frequencies in x-direction) we instead minimize E(1, β).

θ	α	β	min E (α, β)	β	min E $(1,\beta)$
20	1.00023	0.51555	2×10^{-4}	0.51281	3×10^{-4}
30	1.00120	0.53590	1×10^{-3}	0.52938	2×10^{-3}
40	1.00387	0.56624	4×10^{-3}	0.55365	5×10^{-3}
50	1.00971	0.60872	1×10^{-2}	0.58683	1×10^{-2}
60	1.02083	0.66667	2×10^{-2}	0.63060	3×10^{-2}

As was pointed out by Claerbout equation (7) can be solved approximately by using a splitting method (Russian method) and then no restriction on $\varepsilon(x)$ is needed. As an alternative we will here derive an explicit scheme for (7) under the assumption that $\varepsilon(x) \geq 0$. We have

min
$$\varepsilon = 0 \Rightarrow \frac{1}{c} = (1 - \frac{\beta}{\alpha}) \frac{1}{c_m} + \frac{\beta}{\alpha} \frac{c_m}{c_M^2}, \quad c_M = \max c$$

$$\varepsilon(x) = \beta c_m (\frac{1}{c^2} - \frac{1}{c_M^2}) \leq \frac{\beta}{c_m}.$$

Now let $t_n = n \cdot \Delta t$, $z_k = k \cdot \Delta z$ and let $Q_k^n(x)$ correspond to $Q(x, z_k, t_n)$ and consider the family of schemes

$$(I - \delta T) (Q_{k+1}^{n+2} + Q_k^n - Q_k^{n+2} - Q_{k+1}^n) + 2 a T[d(Q_{k+1}^{n+2} + Q_k^{n+2} + Q_{k+1}^n + Q_k^n) + (1 - 2d) (Q_{k+1}^{n+1} + Q_k^{n+1})] + b (I - \delta T) [Q_{k+1}^{n+2} + Q_k^{n+2} - 2(Q_{k+1}^{n+1} + Q_k^{n+1}) + Q_{k+1}^n + Q_k^n] = 0$$

$$a = \frac{\Delta t \Delta z c_m \beta}{2 (\Delta x)^2} \text{ and } b = \frac{\varepsilon(x) \Delta z}{\Delta t} ,$$

$$(8)$$

where T is now a matrix corresponding to δ_{xx} . Since we want to solve for Q_{k+1}^{n+2} the scheme is explicit if $2ad(x)=(1+b(x))\delta$ and by using this condition we get

$$(1+b)(Q_{k+1}^{n+2}+Q_{k}^{n}) + (-2b+2(a-\delta)T)(Q_{k+1}^{n+1}+Q_{k}^{n+1}) + (-1+b+2\delta T)(Q_{k+1}^{n}+Q_{k}^{n+2}) = 0$$

$$(9)$$

The stability investigation can be done in exactly the same way as in (Internal report, June 17, 74, G. Starius). Stability in the t-direction means stability of the difference equation

$$(1+b) Q_{k+1}^{n+2} - 2 (b - 4(a-\delta)) Q_{k+1}^{n+1} + (-1+b+8\delta) Q_{k+1}^{n} = 0$$

which is stable (a, b, $\delta \ge 0$) if and only if

$$|a - \delta| \le \delta \le \frac{1}{4} \tag{10}$$

The overall stability in the z-direction is unconditional as in the paper referred to above. Therefore (9) is stable if (10) holds, where a is given in (8). In the stability analysis above we have assumed that b was a constant.

Finally we want to point out that a desirable continuation of this paper seems to be to derive a good scheme for equation (6).