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Migration Equation Coefficients for An Emergent Angle Frame
in Stratified Media

by Raul Estevez

In his paper of July 3, Claerbout described two different frames
based on a layered model and pointed out the necessity of computing
numerically the coefficients of the corresponding migration equations.
For a given velocity model +v(z) , this would imply the computation of
several tables connecting the travel time T , the horizontal displace-
ment u , the depth w and the ray parameter p = sinf/v . Specifically,
we would have to compute u(p,w) , T(p,w) and p(u,w)

In the present paper we intend to accomplish this task for the first
frame (p - frame). The remaining frame ( h - frame) will be considered
in a later paper.

We start from a coordinate system, with s , z , g and t asg

independent variables (Fig. 1).
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The transformed variables p, y, d, r are then defined by the inverse

of the following transformation:

s(p, y, d, ) = y - u(p,d)

z(p, v, d, r) = 2rd/(l+r)

gp, v, d, v) = y + ulp,d) - ulp, 2rd/(1+r))
t(p, v, d, ¥) = 21(p,d) - t(p, 2rd/(l+r)

(1-1a)

(1-1b)

(1-1c)

(1-14d)

Now let's try to compute u(p,w) and T(p,w) for a layered media.
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According to Fig. 2, we have the following relations for the ith
layer:
Dui = Dzi tanei (1-2)
Dzi = vy DTi c039i (1-3)
sinei = pvy (1-4)
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Therefore, from (1-2) and (1-4), we find:

/2 2.,-1/2 b -

_ . a2 1 _ _
Du, = D z; s:Lnei / (l-sin Gi) =p Vi[ 1 (pvi) ]

Whence we obtain for the case of a continuous variation of v with depth:

W
u(p,w) = p& v(z) [ 1- (pvzn?1Y? as (1-5)
0

In the other hand, from (1-3) and (1-4) we have

D zi Dz,
D i

E = 2
Vi [l— (PVi) ]

i vicosei 1/2 ?

whence
Yo 2.-1/2
T(p,w) = X m)[ 1 - (pv(z))”] dz (1-6)
0
Substituting (1-5) and (1-6) into (1-1), we get for the direct

transformation:

d 2 .-1/2
s =y -S pv(z)[ 1 - (pv)” ] dz (1-7a)

0
z = 2rd / (1+r) (1-7b)

d 2rd/ (1+r)
g =y *‘S PV(Z)[l‘(PV)z]_l/zdz —S pv[l—(pv)z]_l/2 dz

0 0

d 2.-1/2
= y-+S pv[l- (pv)7] dz (1-7¢)
2rd/ (1+r)
d 2rd/ (14r)
_ 1 2.-1/2 12,7172
t = 2&0 V(z)[l—(pﬂ ] dz —X V(Z)[l (pv) ] dz
0 (1-7d)
2rd/ (14r) d
_ % %{1—(pv)2]_1/2 + 2& %{1—(pv)2]"1/2 dz

0 2rd/ (1+r)
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Now, since we are interested in the inverse of this transformation,

what we really want is the Jacobian:

r—sp sy 84 Sr— r-sp 1 Sd 0 ]
zp zy z4 z 0 0 z4 z_
= (1_8)
8, &y 85 8 g, L 83 8
tp ty td trJ tp 0 t(:1 tr
Calling d' = 2Zrd/(l+r) , the remaining derivatives in this Jacobian
are:
d d
sp = - X vi 1 - (pv)2 ]_1/2 dz - p2 S v3[ 1 - (pv)2 ]"'3/2 dz (1-9a)
0 0
s, = - @I 1= (pvan? 172 (1-9)
zg = 2r/ (1+r) (1-10a)
z_ - 24/ (1+r)° (1-10b)
d d
8, = X vi 1 - (pV)Z]_l/zdz + pzx v3[ - (pv ) ] 32 4 (1-11a)
q’ a’
gg = V@ I-v@)A ™2 - Zpu@n [-(va T (1-11b)
g, = -5 pv@) [1- (vian? 17?2 (1-11¢)
(1+1)
a' d
ty T S pv[1l- (pv) ] w32 4, 4 2& pv[l- (pv) ] 32 4 (1-12a)
0 a’
_ 2 2.-1/2 2r 1/2
ty = Trpl-ev@)] - ev@n? 1 (1-12b)
e o= - [1- (pu(a')? 171/2 (1-12¢)

(141 )2 v(d )
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If we now introduce the following notations:

d
I,(p,d) = X v 1- el 12 g, (1-13a)
I(p,d) = ‘S - w17 4z (1-13b)
13@,d) = X (pv) 1 ~3/2 dz (1-13c)
I.4(p,d) = S v3[1 )2 ]'3/2 dz (1-134d)
I (p,d) = \ wn? 1732 4. (1-13e)
I(p,d) = g vl 1 - (pv ) 3/2 dz (1-131£)
d'
SQL(p,d) = [ 1 - (pv(a))? 172 (1-13g)
SQ2(p,d,r) = [ 1 -(pv(a"))? 171/2 , (1-13h)
the elements of the Jacobian of the direct transformation can
be written as:
sp = --I1 - p2 13 (1-14a)
s, = 1 (1-14b)
sq = - pv(d) SqQl (1-14c)

s. = 0 . (1-144)
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zp = 0 (1-15a)

= O l_le
Zy ( )
zg = 2r/ (1+1) (1-15c)
2, = 2d/ (141)2 (1-15d)
g = I+ p2 I (1-16a)
p 2 4

= 1 1-16b
8y ( )
gd = Sd - zd pV(d') SQZ (1-16C)
g, = -~z pv(d') sQ2 (1-164d)
£, = p(Ig+21I) (1-17a)
t = 0
y
£, = 2 _50l - z. —%— 502 (1-17c)
d vy S - 2q Ty SQ c
£ = -z —A s (1-174d)
r r v(d")

The computation of this Jacobian and its inverse as functions of
P, d, r and for a given velocity model wv(z) , shouldn't be a difficulsr
or expensive task. Once we have computed the Jacobian of the inverse
transformation, the coefficients of the transformed wave equation can easily
be found. Apparently we have to compute 6 different integrals,
(Il to I6 ), but in practice we only have 3 integrals, which can be

computed together with the functions SQ1 and $Q2 quite cheaply. This



91

will be shown later.

The considered frame differs from the one studied by Steve Doherty
in his paper of June 17, in that =z(p,y,d,r) now equals 2rd/(1+r) .
As a basis for further reference and checking, we solve the above problem
for two different velocity-models: constant velocity and velocity

linearly varying with depth.

Constant velocity model:

If the velocity is constant throughout the medium, the expressions

for wu(p,d) and t(p,d) ((1-5) and (1-6)), simply become

pvd[ 1 - (pv)2 17172 (2-1)

u(p’d)

and

@ 1 1- en? 1 2 | (2-2)

T (P’d)

therefore, the transformation (1-1) can be rewritten as:

s = y-pvd[ 1- (w2 17L/2 (2-3a)
z = 2 rd/(1l+r) (2-3b)
g = y+oopvdll- v’ 172 (2-3¢)
A R R (2-3)

The Jacobian corresponding to this transformation, equivalent to

(1-8), can easily be computed:
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= - vadl-ew217% 1 - pvi-ew 2172 o

s 2r/(l+r) ; 2d/ (1+r)2

vall-en)?172 5 15 BT e n2Y2
- —2— puali- (w72

(1+r)
pavil-on 172 5 0 5 2 La-ew? 2
-2 i pn?l?

(1+r)

(2-4a)

(2-4b)

(2-4¢)

(2-44)

The transformation, inverse to (2-3), can also be computed through

lengthy but not difficult algebra.

B(Ssgat)

2 ,1/2

= [ o) - (g2 ] :

the inverse transformation is found to be:

p(s,z,g,t)

Y(S,Z’g:t)

d(s,z,g,t)

r(s,z,g,t)

It

(g-s) / V2t
(g+s)/2 + z(g-s)/2 B
(B+z)/4d

z/B

If, following Steve, we write

(2-5)

(2-6a)

(2-6b)

(2-6c)

(2-64d)
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Its Jacobian is then:

Poiggie = = 1Vt 3 05 1Vt 5 - (gme) /o7t (2-7a)
- 1a - z("t)z)- g8 . Loy z("t)z)- -2 2 t(g-s) (2-7h)
ys;z;g;t 2 B3 >2RB° 2 B3 g 5 B3 zv g=s
— , . [ — . 2 -—
s;z;g;t - (g—s)/ZB B 1/2 ) (g S)/ZB s vV t/ZB (2 7C)
Tsizigst Z(g—s)/B3 s 1/8 5 2(g-s)/8> ; - z v2t/8> (2-74)

If we now insert these elements into the transformed wave equation:

2 2
[( pgap + ygay,+ dgad + rgar )T+ (p oty g+ d dg +r,or)" -

1 2
- 2 (p 3 +y 3 +d3 +r23 )

] Q = 0 s (2—8)
we get as expected, zero coefficients for Qdd , Qrp s de and de .
The remaining coefficients of interest are:

Coefficient of Q :
PP

2 2 2
2 2 g- 1+ 2.2
Py T pi - lth - i -4 S% I = g 5 = ¢ zr;[l - (ev)717 (2-9a)
& v vt (vt) vt 4v—d
Coefficient of Q :
rr
2. 2 1 2 1 Z° 2 2. 1 . 2. (l-r)(1+r)>
L B —g[(g—s) - (vt)7] = ~§(l—r ) = e (2-9p)
& v 8" B B 4 d
Coefficient of Qrd :
2ed +rd - ray=gclzee’ 1, zewnl 2 am? o
Telg T T2% T T2 T T 2 & 2B 2 2d

v 8 2 g* B
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Coefficient of Q :
vy

2
2 2 1 2 1 1+
y + Yz - —2 Yt = Z— —(_..Qz_ (2—9d)
® v 1-(pv)
Coefficient of Q .
yp
1 I g3 2, z(g-s)® _ 2d
20y, ¥ Py, =Ty py) = 538 + 2(ve))- HERL = 25 -
: M votR v tB vitB
= _(l-l—_r_)_z_ [ 1 - ( )2 ]1/2 (2_96)
T 2vad pv
Coefficient of Q .
yr
1 g=s (1+r)2 2.-1/2
20grg ¥y, T, T YT =y (B = 25 - v (2-9£)
g 8 zZ 2Z v t t B 2d

Linear velocity model:

Now let us assume that the velocity varies linearly with depth:

v(z) = 2 + bz
so that, if we define d' = 2rd/(l+r) , then

vgEv(d) =vy+bd (3-2)
and

Vi = v(d') = Y + 2rbd/ (1+r) (3-3)

In this case the integrals for u(p,d) and T(p,d)((1-5) and

(1-6)), after making V'2 =t and dz = dv?gz = %-dv , yield
d

u(p,d) = p\ L e P A AN e TR R I E
0

and
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T(P,d) - _[l (P ) ] 'Q'I;'Q/n ) 1/2 2 1/2 ’ (3"5)
0 {[l—(pv ) +13{11-(pv) ] 1}
therefore, transformation (1-1) becomes:
s =y (- v - - v itE (3-62)
z = 2rd / (14r) (3-6b)
g = v-gp - evp1Y? - - v, 0 (3-60)
L v 1R ar 1 v 0 1 22 e vy 2 2y 2
t = =n (3-6d)
(- 1 21} (1= (v, 0212132 {11 v ) 211221312

Although this transformation looks somehow complex (especially
after remembering (3-2) and (3-3)), it comes out that it has a very simple
Jacobian. Following the same procedure we used to compute u and T , we

easily get for the integrals (1-13):

d
11<p,d>==& M B O e USRI B CE S
0 oP
d
L) =§ el B P R I R E I D s Ll S RS
g bp
d
1,(p,d) ==S V1-en?17 2z = - v 21 2 v 22
0 bp"
- -Gy 1M 2 (1w 217 (3-7¢)
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d

14(p,d)==% v 1-pw) 217 % =---lz'{[1-(pvd)2]l/2+[l-(pvd)2]_l/2 -

' bp

d

- -G 01 2 n-ev, 0T )
d'

I, (p,d) =S vi1-0v 17 28z = L5 {11y, 02172 [1-(ov 2172 (3-76)
bp

T,(p,d) =% o[1-6w 1 a2 = L (1-Gv 2172 [1-6v, )17V (376
bp

dl

By using these values and substituting them into (1-14) through

(1-17), or by direct differentiation of (3-6), we get for the corresponding

Jacobian:
s = v 172 1-v )1V 5 1 - Gev 2172 5 o
P3ysdiT 2 0 d > T
(3-8a)
zp'y-d'r =03; 03 2r/(Q+r) ; 2d/(l+r)2 (3-8b)
= L 1-v )Y -G P11 5 v 1-ev 2172 -
8psyid;r bp? PVy4 PV4r 3oL Py li=lpvy
- v v AT - oy -Gy 0217 (3-8¢)
(1+1r)
1o 2.-1/2_ .. 2.-1/2_ .. 2.-1/2, . |
tp;y;d;r = bp{2[1 (PVd) ] [1 (PVdv) ] (1 (PVO) ] }; 0 (3-8d)
2 2.-1/2_ 2r -1/2,_ _2 2.-1/2
;s —[1-(pv )] [l (pv,+) ] ~ ——————-—-[l (pv,,) 7] .
vy d T v, V4 (142 V4

Since I was interested in studying this model mainly in order to test
computer algorithms, I didn't go farther into calculating analytically the

inverse of this Jacobian and, therefore, the equation's coefficients.
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A last word could be said in relation to the expressions obtained
for this model. Since, in most of the expressions, and particularly
in the integrals (3-7) we have b in the denominator, we could expect
trouble when going from the linear to the constant model as b + 0 .
Nevertheless, it can be shown that all the expressions tend to the corres-
ponding ones in the constant velocity model as b -~ 0 . We will show this
for the case of Il :

/ / PZ(V 2" v 2)

1 2.1/2 2.1/2 1 D d 0
~{[1-(pv )1 = [1-(pv )17} = = —

1 2 0 d 2 v~V Z]l/2+[1_(pvd)

bp p- d 0 [1-(pvy)

[am]
Il

2]1/2

5 Vo * Vg N it~ 212, (3-9)

-pv) 1 2 (- Gv 212 v

0

which is the exact expression for Il in the constant velocity model.

Computer algorithms for the general case:

Although the computation of the Jacobian (1~8) as well as its
inverse seems to be a straightforward and simple computational problem,
nevertheless, a word of caution has to be said in relation to the corres-
ponding computer algorithms.

Notice that the main part of the computation is connected with the
evaluation of the integrals (1-13). Since all of them have a singularity
at pv =1 , we may encounter troubles with its evaluation for values of
pv close to 1 .

Here we will discuss a method of evaluation, proposed by Bob Anderssen,
which avoids or at least softens this difficulty by integrating the
singularity analytically. It is based on the numerical technique of
product integration, first discussed in detail by Young (Proc. Roy.

Soc., 1954). For the present problem, the proposed method is very simple:
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since all of these integrals have analytical solutions for a linearly
dependent velocity, we will assume that the velocity varies linearly
within each layer, so that in each of these regions we can compute them
analytically. Further notice that, as pointed out before, we are dealing

with only three different integrals:

d

I, ==X vl 1- vl 172 g, (4-1)
0
d

I2 ==X v3[ 1 - (pv)2 ]--3/2 dz (4-2)
0
d

I3 ==X v 1 - (pv)2 ]_3/2 dz . (4-3)
0

Then, following the same procedure used in the previous part to compute

these integrals, and assuming:

v, oS Vi + biz s (4-4)

we get for the first one:

Nz-1

A | 2.1/2 2.1/2
=% 5 - evpiY? - - v, ) AYA (4-5a)
1 2, b, k| j+l
P J=0 ]
Noticing that bj = (vj+l—vj)/Dz s, (for Dzl=Dzz=...=Dz ), after repeating
the calculations we did in (3-9), we finally get:
Nz-1 v, +v
. ‘41
I, = Dz I J__J* (4-5b)
1 . 2.1/2 .. 2.1/2
j=0 [1-(pvj) 17 7+[1 (pvj+l) ]
For the second integral we then have: (4=6a)
L= b v, B Rt (v Y2 (e vy Y 2 1 e 272
2~ 7% b PVis1 PVin1 PV PV ’

p J=0 73
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which after some algebra becomes:

(4-6b)
pe Y21 ) 1= -Gvp*1Y? -G, 0B
I, === ¥ (v,+v,
S Il e R e R S R TR A LN
The last integral comes out to be
Nz-1
AR R R CINI b B e R R (4-72)
P 3=0 7]
or
Nz-1 v, +v
I, =Dz I J I+l (4-7b)
P 50 vt vy 0 20 Gv) 1 R v, B

Notice that all these three integrals give the correct values for the

v = const case when we set V=Y, ...vj'..=v . We could use both expres-
sions (4-5a), (4-6a), (4-7a) or (4-5b), (4-6b), (4-7b) for evaluating
the integrals depending on the specific problem we will be solving: If

we expect bi to be zero for some values, we rather shall use expressions
"b" . On the other hand, if we are sure that bi is always different
from zero, but we are forced to work near the singularity, we rather shall
use expressions '"a'" . This last case will be discussed in more detail in
the next paper, where the '"h-frame" for layered media will be analyzed.

If both situations hold, instead of "a" or '"b" we shall use the

already obtained expressions for a constant velocity model.



