56 10 June 74: se

A Wide Offset Migration Equation

by Jon F. Claerbout

Previously we migrated by taking an upcoming wave and marching
it back down the z-axis. Data at later times (variously called late
t' or late d ) was moved to greater depths 2z . Here we introduce a

diffraction coordinate r by

r = z/4d (1a)

z = rd (1b)

Instead of integrating down the z-axis from the surface z=0 to
z=vd we now accomplish the same goal by integrating down the r-axis
from r=0 to r = 1/v . For simplicity we set velocity wv=1 . The
idea is depicted in figure 1.

By means of the r coordinate we can now do a rather more general
treatment of offset than was done in the Claerbout-Doherty 1972 paper.
The earlier treatment which retained only first order in offset terms
in equation (49) is now generalized to retain all orders. Although
the present analysis is restricted to a constant velocity coordinate
frame it is possible that the diffraction coordinate r being introduced
will be generalizable to facilitate treatment of all offsets in

arbitrary stratified frames. We define the coordinate transform

x = k(2-1r) (2a)
z = rd (2b)
t o= (2-71) (d°+x2)H/2 (2¢)
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Figure 1. Migration using a diffraction coordinate r in
place of a depth coordinate z . Instead of continuing
the data from z=0 to z=d in equal intervals of Az

we march along in equal intervals Ar of r =2z/4d .

Reference to figure 2 shows a geometrical interpretation.

source X

z=rd

receiver

Figure 2. Geometry for continuing receiver down from surface

to a reflector.
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The inverse transformation can be easily worked out from geometrical
considerations and the expressions below can be readily checked by

substitution from (2).

1/2

kK = (1l+z/(t2-x*)Y2yx/2 (3a)
ro= 22/ -2y, (3b)
d = ((e2-2H2 L,y (3¢)

Naturally we will require the Jacobian matrices of the transformations.

Using the letter s as an abbreviation for ( d2 + k2 )l/2 we
calculate the Jacobian of (2)
- - - _ 7
Xy X X4 2-r k 0
Z, z_ zg | = 0 d r (4)
£y t. td_ £2—r)k/s -8 (2-r)d/s ]

The inverse to (4) is tedious to compute but not hard to check. It

is
- 2, 2 -1
r 2d"+rk rks
kx kz kt 2-r kd T 2-r
1
T r r = rk (2-r)d -rs (5)
X 4 t 2
2d
2
d d d -kd d ds
X z t_ b -
Given that

P(x, z, t ) = Q(k, r, d) (6)
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The wave equation in a homogeneous medium is

2
0 = ( kX Bk + r Br + dX Bd )

2
+(kz 8k+rzar +dzad) Q

Making the usual assumption that the
nate system gradients, we square the
were constants. In (7) we find the
is

2 2 2

Qg (dy + 4, - d ) =

_ 2.2 4 2
= Qg (K°d” +a" - d(

The lateral shifting de term is

de 2 (kxdx+ kzdz— ktdt)

The last two terms vanished because o
coordinate system.

The main extrapolation term er

er 2 (rxdX +rzdz - rtdt)

The unfamiliar ri term is

ri 2 (erX + kzrz - ktrt)

Q +
(7)

2
- ( kt Bk + r, Br + dt Bd )7 Q
wave's gradients exceed the coordi-
operators in (7) as if the coefficients

Qdd term. This time shifting term

k2 + a2 )y /4a = o

1t
O

f our selection of the ray

Qe /d (8)

r

k/d (9)

I
O
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The diffraction term Qkk is

2

2 2 B 2,.2 2
(kX+kZ—kt)—Qkk(l+k/d)/(2-r) (10)

Uk

The parabolic approximation term er is
2 2 2 _ 2
er( r_+ LI ) = er( 1-r)/d (1

These are all the terms there are in (7), namely, three cross terms
and three second derivative terms. Thus, with the parabolic approximation

we have the grand result that

(1+k%/4%)

P}
(2-1)2

k -
(38, + 3,03 Q = -d (12)

Kk @
Notice that no poles are encountered in the region r =0 to 1 .

The unfamiliar term ri has given us a directional derivative
in the data plane Q(k,d) along a line of constant k/d instead of
the usual time derivative.

Now a valid question to ask is "Why so much effort just to achieve
only an approximate equation for propagating in a homogeneous material,
even if it does turn out to be generalizable to stratified media?"

The answer involves data interpretation. It is harder to make inferences
about the 2 (or 3) dimensionally complex earth from surfacevdata than

it is from downward continued data even though the downward continuation

may incorrectly assume a homogeneous velocity. The reason is based on

the fact that structural complexity of the earth usually exceeds its
velocity complexity. Equation (12), although it assumes velocity
homogeneity, makes no assumption about the complexity of reflector

shapes other than the improvable Fresnel-like approximation.
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Downward continuation with the wrong velocity at least will reduce the
data complexity due to the earth's structural complexity.

In summary, before we interpret data we have no knowledge of
velocity or structural variations within the earth. In order to get
some knowledge we downward continue the data with (12) which assumes
constant velocity. This reduces structural complexity. From the downward
continued data we get our best estimates of inhomogeneity. Then we can
propose the task of obtaining a more inhomogeneous version of (12)

and starting all over again with our improved knowledge.



