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An Algorithm for Obtaining

the Correlation Functions Between Forward and Backward Prediction Error Filters

Suppose we have a sequence of N real reflection coefficients, Cl’

\J
C2, C3, «eey C_ . The C's

N are thus real numbers with magnitudes less

than unity. This sequence can be used to generate a sequence of prediction

error filters, where the first prediction error filter is 1 + C1

The higher order P.E. filters are then obtained by the

z in

z-transform notation.

following recursion algorithm. If 1 + FT z + F; z2 + .. + TZ z" is the mth

P.E.F., then the m+ 1 th filter is obtained by
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We note that Pm+1 = C

mFl T Cmtl .

Suppose we have a stationary time series, xn , Wwhose autocorrelation

?unction is &(t), 71=0, 1, 2, ..., and which has no particular relation

with the above sequence of P.E.F. Suppose that the physically realizable

mth P.E.F. is convolved with this time series as if we were trying to generate

the forward prediction error time series. This forward prediction error

time series, u_ s does not have minimum power or a white spectrum unless the
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P.E.F.. happened to be the optimum least mean square error P.E.F. correspon-
ding to ¥(t) . We are explicitly not assuming this to be the case. Thus

the autocorrelation function of u is basically arbitrary but can be calculated
from knowledge of &(t) and the P.E.F.

We also can flip the P.E.F. over so that it is completely non-physically
realizable and convolve this backward P.E.F. with X - The autocorrelation
function of this backward prediction error time series, LA is the same as
that of the un time series. However, the cross~correlation function,

Y(1), between u and W is a new statistic and can also be determined
from knowledge of ¢(t) and the P.E.F. Thus, given &T), for each
P.E.F. there is a corresponding pair of functions, one an autocorrelation

function and the other a cross-correlation function. The sequence of P.E.

filters thus penerates a scquence of correlation function pairs. The purpose

of this paper is to show how this sequence of function pairs can be calculated

recursively, given ¥71), 7=0, 1, ..., N and Cl’ C2, eeey CN

Consider the time séries, L and the two filter outputs u and
n

w oas shown in Figure 1 for the lst order P.E.F.
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Figure 1

The autocorrelation function for this first order case is defined to

be

T = =
%( ) uou o VoW
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and the cross—correlation function is defined to be Wl(T) = G;"E;;; , where
the bars indicate average values. For example, in figure 1 the relative
location of the backward and forward filters are such that the average product
of their outputs is W1(3) . {(We assume the output of a P.E.F. is at the
location of the unity weight.)

To develop the algorithm and to provide a self evident proof, consider

Figure 2.

Cl 1—>~output b
output a —— 1 Cl
.o X, X X5 X X, X3 X oo

output g —~<—1 C,

Cl 1—> output h

: Figure 2

In this figure, four filtered outputs, a, b, g, and h, are shown, two
from forward first order filters and two from backward first order filters
with the relative displacemeﬁts given by the relative locations of the unity
weights in the filters.  Figure 2 is set up to illustrate how we go from the
first order correlation functions éi(r) and Wl(T) to the second order
correlation functions GQ(T) and‘ WZ(T) . In particular, to obtain (%(2),
we can use C to combine the filters which produce outputs a and b to get

2
the second order backward P.E.F. which has output a + C2b s (see Figure 3),

% 2
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2
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Likewise, the g and h output filters can be combined to get the
second order backward filter which is delayed by two steps relative to the

top filter, as shown in Figure 3. The correlation between these two outputs

is ¢§<2) and can be calculated by noting that

(a+C2b)*(g+C2h) =

axg+Cbxg+C,axh+ Cg bxh

2 2

2
= @1(2) +C, \Pl(O) +c, ‘1’1(4) + C, <I>1(2) s

where the =% stands for the correlation operation.
Figure 4 shows how the W2(4)( value is obtained as
(a+ C2b ) % (h+ ng ) =
, 2
a*h+Cbxh+C,ax*g+ C2 bx*xg

2 2

. , )
= ‘1’1(4) +C, <I>l(2) + C, <I>1(2) + C; \1/1(0) .

2 2
a+C2b i | rl 1‘2
X_2 X_l Xo Xl X2 X3 X4
1"3 21— 'h+c2g
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Likewise Figure 5 shows how the WZ(O) value is obtained as

~~

g+'C2h)*(b+C2a) =

2
g * b + Czh * b + ng % a + Czlu*a

2
¥1(0) +C, 9(2) +C, 42 +C) ¥ (4) -

r2  r?
2 1 1-> biC,a
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g+C2h ~<—1 Ti PZ
Figure 5

The fourth possible combination leads again to the calculation of @2(2) .

These equations for going from the first order to the second order

functions can be generalized for any lag value to give

6,(T) = 8 (1) +C, ¥ (27T) +C, ¥ (2+1) + c% o, (1)
Y (241) = Y (4D +C, G +C, (1) c§ ¥, (2-1)
Y (2-1) = ¥ (2-) +C, 4D + G, §(T) cg ¥, (2-1)

To see how to generalize these equations to the case of going from the

mth order to the mtl th order, we can study Figure 6 which shows the case
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of going from the second order to the third order.

roor2 1 b
a ——1 ri rJ
X_2 X_l XO Xl X2 X3 X4 XS X6
‘g t— 1 I'Jz_ I’;
rg ri l1-> h
Figure 6

Here, by careful inspection and noting that Figure 6 corresponds to the

particular case of Tt=4,

0(1) = 8,(1) + Cy ¥, (3T) + Cy ¥, (3HT) + c§ 3, (1)

Y334) = Y, (340) + Gy 0, (1) + Gy (1) + c‘é ¥ (3-1)
2

W3(3—t) = W2(3—T) + C3 QZ(T) + 03 @z(T) + C3 Y(3+1) .

We can now see that the general recursion equations in going from the

m th to the mtl th case for any lag T must be

2
%&+1(T) = ( 1+Cm+l ) ?n(r) + Cm+l( Wm(m+1+T) + Wm(m+l—T))

2
= +
Wm+1(m+ltr) Wm(m+l~r) + 2 Cm+l ?n(r) + Cm+1 %n0w+l¥r)
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These three equations are the basic recursion equations of this paper. We
next wish to set up a computer algorithm for calculating the correlation
functions recursively. We shall use a three column array for in place storage

.of results.

Figure 7 shows this array with the values it contains after the mth step
in the algorithm. The original autocorrelation function is assumed to be
known out to a maximum lag of N . Note that initially for wm=0, the table
contains only values from the original autocorrelation function, since

WO(T) = ¢b(T) . (Figure 10 needs to be studied to obtain the complete arréy

values after any step in the recursion.)

Wm(N) @m(N—l—m) Wm(Z—N+2m)
Wm(N—;) ?H(N-Z—m) Wm(3—N+2m)
¢ f

[ 4 . .

)

o [ 4 .

¢ ' e »
Wm(m+l+T) ?n(T) Wm(m+l-T)

Figure 7

To show the basic transition step in the algorithm, Figure 8 blocks out
the replacement process involved in using the three basic recursion equations

yith =1 and m=1'.
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Figure 8

By using this upward shifting in the replacement procedure, the three
terms on any row in the new array are then ready to be combined in the next
transition from m to mt+l . For example, WZ(S), ¢Q(2) and Wz(l)

are the three terms needed in the basic recursive equations when m=2 and

T=2 . To avoid wasteful temporary shortage, we should note that the table
replacement proceeds downward from the top of the table. Figure 9 glves the
order fn which the new terms In the table should be calceulated.

lst lg x ‘*g} > 1 2

3
2nd  [x  x xl—> z/ 3/-_{ 4
3rd  {x x x|—> 3/4/5
4th [x x x|— 6755
o ET— o

(9 do.not replace this element.
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We note that steps l; 2 and the last one can be specialized for; efficiency.
In particular, the last step should not replace the element in the left hand
column. Also, the table is one shorter after each transition from m to
mtl . This shortening is expected if one considers tﬁat if the original
autocorrelation function is known out to lag N , then the autocorrelation
function for the first order P.E.F. can be calculated only out to lag
N~1 and so forth. As a final observation, if the algorithm is run to comple-

tion, the final values in the array are as shown in Figure 10.

Vo M 0 () ¥ (N-2)

Yo, -1) & ,(0) ¥ (N-3)

Vo o (-2) @ ,(0) Y., (N-4)

' . .

Y2 9 ¥ (0)
Wo(l) @O(O)
Figure 10

The first and second columns of figure 10 are the most interesting since
the Wm_B(m—Z) is the correlation between the forward and backward m-3th
order P.E.F. when they are in the correct relative position to be combined
‘into the next higher order forward and backward P.E.F. In>particular,

if our reflection coefficients are not given initially, but are calculated

as needed from the table by the formula, C = - vn-l(n)/¢h-l(o) ,
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we will actually be calculating the reflection coefficients corresponding to
Qb(T) without calculating tﬁe prediction error filters.

To derive the formula for the number of multiplications required to
do the algorithm, we first look at the basic recursion equations from a

programming point of view. The basic equations can be written as

041 (D) = Q(U) + Cul ¥ (rlr) + ¥ (mHl-T) + Q ]

2
‘i’mﬂ (mr+1+4+T1) ‘Pm(m+1+'r) +Q+Q+C° x \Pm(m+1—'r)

. ‘Pm(m+l—’t) +Q+Q+ c2 * \Pm(m+1+fr)

Wm+l(m+l-T)
where Q = Cm+l * QE(T) . Thus in the main loop, only four multiplications

(*) are required to exercise the basic recursion triplet. To run the algorithm
to completion, this triplet of equations must be used (N-1) + ... + 2 + 1

times or N(N-1)/2 times. Thus, the number of multiplications in the main loop
is 2N(N-1) . This can be compared with N(N-1) multiplications involved in
calculating the P.E.F. corresponding to ¢b(T) using the Levinson

algorithm. Of course, in this latter case the special relationship of the

Cn to ¢b(T) allow the factor of two saving in the number of multiplications.



