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Benchmark Program for Migration/Diffraction
Don C. Riley

The benchmark program included in this section was writtenin order
to compare various types of compufers. As such, it contains a representa-
tive mix of the type of operations required for partial differential
equations applications, and to insure compatability was written in basic
FORTRAN. The program also serves well to illustrate some of the tech-
niques used in programming finite difference solutions.

The basic continuation equation for extrapolating wave fields propa-

gating at small angles from the +Z direction is

th = /2 Dxx (1)

In obtaining finite difference solutions to equation (1) we have a wide
variety of differencing schemes to choose from. The mixed method of
Crank and Nicolson overcomes the fine~grid restrictions of explicit
schemes in addition to smaller truncation errors than wholly implicit
schemes. Let us discretize the coordinates as follows: x = jAx, 2z =

kAz, t = nAt 1in which case the approximation to D(x,z,t) will be denoted

n

by DY ..
'S

The Crank-Nicolson scheme is

n n-1 n n-1 2. n n-1 n n-1
D .-D . -D .+ D . D + D + D .+ D

k,J k,j k-1,3 k-1, ] = c/2 CSX[ k,] k,J k-1,] k-1,]

(Az) (At) 4
where the central-difference operator is defined by
n n n
O T - s W T
X k, ] (Ax)2
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Introducing the notation D for a vector with the elements

n n n
P, 1,%,2, PN

in which case we may represent the second space differencing as

Dn] - =T Dn

2
ST 1
x —k (Ax)2 —*%

where T 1is the tridiagonal matrix of dimension NxN

[ 9 -1 0 0
-1 2 -1 0
T =
0 0 -1 2

n n-1 n n-1 cAzAt n n-1 n n-1
- - + = - + +
L 2 TR + Dy "+ D+ 1)
8 (Ax)
AzA
letting a = S t2 and rearranging (3)
8 (Ax)
1 +aTd® = [1-ar]@ P +0D" ) - [1+ ar] D™ L (4)
I 2k 'S I k-1
Equation (4) may be used to extrapolate from z, = (k-1)Az to z, = kAz
knowing the wave field D(x,t) at z.. To start the recursion in time (n)

1

we usually assume that 22 = 0 for n <0, i.e. the first arrival of the

wave field is represented on the finite grid.

In programming equation (4) the simplest way is to have two separate

grids, one for Qi—l n=20,1,2 ...(0ld) and one for QE n=0,1,2...(new).
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These grids, the old and new would be swapped back and forth in extrapo-
lating the waves over many steps in z. 1In an effort to reduce the amount
of core we might examine the algorithm to see where we might overlay some
of the storage. It is somewhat less confusing to consider the following
integrating form of the algorithm for diffracting or migrating wave fields
"in place", i.e. using only one 2-D grid.

Let us express the time differencing in z-transform notation

2 1-z . .
Bt ¥ At 14z @and equation (3) may be rewritten as

(1=2)[D, -~ D, 1] = - aT(+2)[p, + D]
_ - _ (1+2)
Do 7 Dy T AT gy [y + D] ()

Let us expand (1+z)/(l-z) in terms of an infinite series

(1+z)
(1-2)

= 14+ 2z + 2z2 + 223 + ...

and inserting this into (5)

n n _ n n n-1 n-1 n-2 n-2
Pk - Dl—l = aT [D, + Bk-l] 2aT[D + D -1 + D + Qk—l + ...]
n n ® n-i n-i
= [1- - +
[T + aT]_D_k [1-aT]D -1 ZaT-=1(Qk D —l) (6)

Equation (6) is the integrating form which allows us to use a single

grid for projecting the wave field over successive k steps.
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The algorithm is

n .
D % Initial wave field D(x,0,t)

// u <« (0,0, ..., 0) assume QZ =0 n<0
| /s« D"
k=1,2, ... 4 % £« s~ T(as + 2au)
fF'n= 1,2, 3 - -
/ (r+arm) D" = £

The following computer program takes an initial wave field and outward
continues (diffracts) it through 20 steps in the +z direction. At this
point the wave field is inward continued (migrated) through 20 steps in the

-z direction. The final reconstructed frame is to be compared with the

initial frame.
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A BENCHMARK PROGRAM _
FOR PARTIAL DIFFERENTIAL EQUATIONS APPLICATIONS

FOR A COMPARISON TO YOUR COMPUTER CENTER FILL IN THE
BLANKS BELOW AND RETURN TO :

JOM CLAERBOUT

GEOPHYSICS DEPARTMENT

STANFORD, CAL. 94305

YOUR NAME
INSTITUTION -
ADDRESS - ‘

OO0 OO0

301
302
303

304 -

305
306
307
308
309

COMUTER BRAND AND MODEL

RUN TIME INCLUDING COMPILE

JOB COST EXCLUDING OVERHEAD

JOB COST INCLUDIMG OVERHEAD
PRIORITY (DAY, MIGHT,HIGH,LOW, ETC.,)
DATE AND TIME

TURNAROUND TIME

ON AN [BM 360/67 THIS JOB TAKES LESS THAN FIVE MINUTES
AND REQUIRES LESS THAHN 250 000 BYTES STORAGE

DIMENS ION WAVE(240,240) _
RICKY(T)=(1.-2,*AR*T*T)*EXP(=AR*T*T)
CHIRP(1)=10.%.5+(1.-COS((1.+2.%(1-1)/(NX=1))*
6.283%2.0%(1-1)/(NX-1)))+20.

AR=8./17./17.

A=1.00
LS=9
NX=240
NT=240
NZ=20
DO 1000 J=1,NT
PO 1000 f=1,NX

1F(1-120)
IF(1-150)
IF(J-80)

1F(J=154)
1F(J-106)
IF(1-128)
IFCI-142)
IF(J-88)

IF(J-98)

IF(J-121)
IF(J-116)
[F(J-134)
IF(J=142)
IFCI-142)

330,301,301

302,302,330
330,303,303
304,304,330
305,305,309
340,340,306
307,340,340
340,340,308
330,340,340
310,310,311
311,340,340
330,312,312

340,340,313
330,340,340

WAVE(J,1)=0,75
GO TO 1000
WAVE(J,1)=0.0
CONTINUE

DO 2000 I1=1,NX
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D=CHIRP(1)
IST=D-1LS/2+,499
IEN=1ST+LS-1

DO 2000 J=IST,1EN
WAVE(1,J)=RICKY(D-J)
K=0

PRINT 100,K

CALL OUT(VAVE,NX,NT)
DO 4000 K=1,NZ

CALL FAST15(UAVE,NX,NT,A,+1)
IF(MOD(K,5).NE.0) GO TO 4000
PRINT 100,K

CALL OUT(WAVE,NX,NT)

CONT INUE

DO 5000 K=1,NZ

N=NZ-K

CALL FAST15(WAVE,NX,NT,A,-1)
[F(MOD(N,5).NE.0) GO TO 5000
PRINT 200,N

CALL OUT(WAVE,NX,NT)

CONT INUE

SToP

FORMAT(1H1,50X,18HDIFFRACTION FRAME ,12)
FORMAT(1H1,50X,16H41GRATION FRAME ,12)
END

SUBROUTINE FASTI5(WAVE,NX,NT,A,MODE)

DIMENSION WAVE(HX,NT), S(’LO) U(2L0) v{i240),E(240),F(240)

NXM1=NX~-1
A2=2 %A
ADIAG=1,+A2

AOFF==A
NBASE=0
IF(MODE.EQ,~1) NBASE= NT+1
DO 1000 I=1,NX
utr)=o0,

DO 4000 JT=1,NT

J=NBASE+MODE+JT
DO 2000 1=1,NX
SC1)=WAVEC(],J)
EC1)=A*S(1)+A2%U(1)
DO 3000 1=2,NXM1
VOIY=SC1)+ECI=1)+EC1+1)=E(1)=E(1)
CALL TRICAOFF,ADIAG,AOFF ,NX,WAVE(1,J),V,E,F)
DO 4000 [=1,NX
UCE)=UCI)+SC1)+HAVECT,d)
RETURN
END
SUBROUTINE TRI(A,B,C,N,T,D,E, F)
DIMENSION T(N),D(H),F(N), E(N)
N1=N-1
E(1)=1,
F(1)=0.
DO 1000 1=2,N1
DEN=B+C*E(CI-1)

A
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E(1)=~A/DEN _

F(1)=(D(1)-C*F(1=1))/DEN

T(N)=F(N1)/(1.0- E(Nl))

DO 2000 J=1,N1

1=N=-J

T(1)= E(l)*T(I+1)+F(I)

RETURN

END - | |

SUBROUTINE OUT(WAVE,NX,NT)

DIMENSION WAVE(NX,NT), ICHAR(21),LINE(120)

DATA 1CHAR/1HH,1HG, 1HF,1HE, 11D, 1HC, 1HR, 1HA,1H ,1H ,1H1,1H2,1H3,
| 1H4,1HS5,1H6,1H7,1H8,1H9,1H0, 1H*/

NX2=NX/2"~

B=0.

DO 1000 J=2,NT,2

DO 1000 §=2,NX,2

T=ABS(WAVE(!,J))

IF(T.GT.B) B=T

CONTINUE

DO 3000 J=2,NT,2

DO 2000 1=1,NX2

IVAL=10.+WAVE(2+%1,J)*12./8B

LINE(I)’ICHAR(MINO(Zl hAXO(OQ,IVAL)))

PRINT 100, (LINECI),1=1,120) S
FORMAT(1H ,120A1)

RETURN

END
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il

The above frame is the attempted reconstruction of the original
wave field (diffraction frame 0) after being continued 20 steps in the
+ z direction, then 20 steps in the - z direction. It is very inter-
esting to note the apparent good quality of the reconstruction. Energy
lost flowing off the bottom of the grid is responsible for the imperfec-
tions in the reconstruction. Theoretically, the results cannot be
expected to be as good as those above. The exact one-way wave equation
does not model evanescent energy ( [kl > |w/c| ) . These non-propaga-
ting waves (such as those arising from the vertical bars in the letters)
may not, in theory, be used in the migration. The migrating differential
equation we used does model energy in the entire( w,k ) space, though
incorrectly in some portions (excessive dip and k_ ). However, when we
run time backwards in migrating a diffracted wavefield the invalid portions
of ( w,k ) are treated the same way as when time runs forward. Reversi-
bility of the equation accounts for the good reconstruction.

Migration Frame O



