Chapter 3
Anisotropy in 3 dimensions

When we try to pick out anything by itself, we find it hitched to everything

else in the universe. — John Muir

In the previous chapter I showed how waves in anisotropic two-dimensional media can
display such phenomena as large amplitude variations, cusps, and anomalous polarizations.
Although such things are certainly possible, we also know that geophysics got along pretty
well assuming P waves were isotropic or at worst elliptically anisotropic for a long time.
So we can hope that the sorts of media we are likely to encounter in the real Earth are
usually not too far removed from isotropy. From the examples in the previous chapter,
we might then feel justified in expecting that we can usually count on having waves that
at least approximately fit the standard isotropic P, SV, and SH designations.

In this chapter we show that while the two-dimensional story is complete as far as it

goes, it is not a good preview of what happens in three dimensions.

3.1 The problem with only looking at symmetry planes

We begin with a simple example of how two-dimensional intuition can be misleading. Refer
to Figure 3.1, which shows three symmetry-plane slices through a simple orthorhombic

anisotropic slowness surface. Each slice shows what seem to be pure P, SV, and SH modes:
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FIG. 3.1. Symmetry-plane slices through the three-dimensional slowness surfaces of a
simple orthorhombic medium. The fat bars and dots show particle-motion direction.
(Dots represent motion in and out of the plane.) Following the numbers from 1 through
3 seems to show the shear surfaces have a mobius-like topology. To see what’s really

happening, look at Figure 3.2.

furthermore, on each slice the P mode and one of the S modes are circular, while the other
S mode is elliptical. Does this mean this medium supports pure P, SV, and SH modes?

No, as we can see by attempting to follow one shear surface around through all three
plots. Start at “1” on the left plot where the “SV surface” intersects the (k/w) axis.
Trace from there up to “2”. Now jump to “2” on the center plot (remembering that in
three dimensions both “2”s mark the same point). Continuing on in the same way, we
get to “3” and jump to the right plot. Here there is a surprise: we are now on the “SH
surface”, and the “SH surface” appears not to reconnect back to “1” where we started.
What is going on?

Figure 3.2 shows a more accurate three-dimensional view. (Musgrave (1981) shows
similar pictures for several physical media.) At “3”, the outer surface is “SV” in the ky—k,
plane, but “SH” in the k,—k, plane. This is possible because the designations “SH” and
“SV” are relative concepts that depend on the orientation of the slice under consideration.
Is the labeled “crossing” really a point where a “qSH” and “qSV” surface intersect? No,
as we can see by closely examining the slices cut at 10° and 45° angles to the k,—k, plane.
Clearly trying to shoehorn shear modes like these into “qSV and gSH” designations is
not going to work in three dimensions. (Crampin (1981) also remarks on many of these
points.)

Perhaps this example is atypically perverse. Do the standard isotropic shear modes
harbor any similar misbehaviors? In Figure 3.3, note that by defining the shear surfaces

as SH and SV we have introduced a nonphysical particle-motion direction discontinuity
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FIG. 3.2. Slices through the three-dimensional slowness surfaces of a simple orthorhom-
bic medium. The fat bars show particle-motion direction. The “crossing” is not what
it appeared to be in Figure 3.1. For another view of the same surface, look ahead to
Figure 3.10.
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FIG. 3.3. Three-dimensional slowness surfaces for the standard {P,SV,SH} isotropic wave
modes. Slowness surfaces are plots of phase slowness versus plane-wave propagation di-
rection; they can also be considered as dispersion relation plots. We show particle-motion

direction by the “sticks” attached to the surfaces. All three surfaces could not be plotted
together because the two shear surfaces are everywhere coincident.
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for vertically propagating waves. This is a consequence of the basic “in-plane” and “cross-
plane” definitions of SV and SH; the same vertically traveling wave with North-South

particle motion is called “SH” on an East-West section but “SV” on a North-South one.

3.2 Wavetype separation in three dimensions

Is it possible there is some other way of separating the degenerate isotropic shear mode
into two well-defined orthonormal shear wavetypes, one that avoids the artificial singularity
the standard “SV, SH” definition creates for vertically traveling waves? The answer is no,
as we will discover in the next two sections in the course of attempting to extend the

two-dimensional wavetype-separation algorithm from section 2.5 to three dimensions.

3.2.1 Extending 2D to 3D

The two-dimensional algorithm in section 2.5.1 seems to extend to three dimensions in
a natural way. As in two dimensions, we use the solutions of the Christoffel equation
(already presented as equation (2.4) on page 17) to find the propagation velocity and
particle-motion direction for each plane-wave component in the Fourier domain. The
problem is still a well behaved symmetric eigenvalue-eigenvector problem; we are still
always guaranteed three orthogonal wavetypes for each k. The only difference should be
that there are three solutions now instead of two. Following this recipe, we should quickly
be able to sketch out a three-dimensional wavefield-separation algorithm modeled after
the two-dimensional version previously presented on page 53.

Remember back on page 17 I warned that things would get interesting later? This
time around I will be a little more careful about how I describe the wavefield-separation
algorithm; the whole point of this section is to show where it goes wrong in three dimen-
sions.

First, construct the operator (I'll go over each step in more detail later):

(1.) Decide which mode this operator will pass.
(2.) For all (kz, ky, k2):
{

(A.) Substitute (kz, ky, k,) into equation (2.4) (on page 17) and find the eigenvector

solutions vy, v,, and vas.
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(B.) Decide which solution corresponds to the desired mode chosen in step (1). Call
this solution v.

(C.) Both v and —v are equally valid normalized eigenvectors. Choose the one that

is consistent with particle-motion directions already determined at adjacent
(kz, ky, k) points.
(D.) Store the result for this (kz, ky, kz) in V(kz, ky, k2).

}

The vector field V is then used to calculate the scalar pure-mode component M of an

input elastic wavefield U by the following;:
(3.) Fourier transform U(z,y, z;t) over z, y, and 2, obtaining fJ'(kx, ky, k2 t).
(4.) For all (kz, ky, k;):
{

M ks, ky, kait) = Vo, ky, ko) Ok, by, k23 1)

}

(5.) Inverse Fourier transform M (kg ky,k.;t) over kg, ky, and k,, obtaining M (z, y, z;t).

We will collectively refer to this algorithm as a “wavetype-separation operator”: this

operator accepts as input a vector field U and outputs a pure-mode scalar component M.

3.2.2 Possible pitfalls

Where can things go wrong? The algorithm attempts to treat each plane-wave compo-
nent (kg,ky,k,) separately. This is misleading. The values of V chosen at each vector
wavenumber (k;, ky, k,) do not exist in isolation, but must together describe a single global
wavetype. Furthermore, the global wavetype described must agree with the way waves
actually propagate in the given medium.

Mathematically, given that the matrix of elastic constants C really does correspond to
the medium under consideration, these requirements boil down to two kinds of Fourier-
domain continuity: First, the vector field V must be a continuous function of plane-

wave direction (kg, ky, k.); a true Fourier-domain discontinuity in particle-motion direction
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would imply there existed an infinite plane wave in the space domain. This would violate
causality, among other things.! Second, the phase velocity (w/k) must also be a continuous
function of plane-wave direction (k;,ky,k,), since a discontinuous phase velocity would
represent a non-physical discontinuous wavefront.

Our naive algorithm can fail at several steps: At step (2A) there is no guarantee of
three unique solutions. Steps (1) and (2B) presuppose we know what “the global pure
modes” look like, and that they are well-defined and continuous. At step (2C) there is
no guarantee that it is possible to choose a sign that is continuous with all the previous
adjacent choices.

In section 2.5.2 T showed several successful applications of the two-dimensional version
of this wavetype-separation algorithm. No special care was taken to avoid the possible
difficulties outlined above; they simply didn’t occur. Is there any reason to expect the

same algorithm that worked in two dimensions should fail in three?

3.2.3 Why two dimensions worked

In two dimensions there are two in-plane wave modes. (There is also a single uncoupled
out of the plane mode, if “2 dimensions” is construed to include particle motion out of
the plane. Here I will use “2 dimensions” in the strict mathematical sense, in which case
there is no such thing as “out of the plane”.)

Except for certain anomalous cases (see section 2.3.3 page 30, or Helbig and Schoenberg
(1987)), the two in-plane modes are clearly analogous to the P and SV modes in isotropic
media. If this is the case, there are no problems; the gP wave is faster than the ¢SV
wave for all propagation directions. Mathematically, since the two modes never have
the same velocity (w/k), they must have distinct eigenvalues (pw?). Distinct eigenvalues
have unique orthogonal eigenvectors, so there is no difficulty finding the particle-motion
directions in step (2A). The phase-velocity inequality also trivially solves the problem of
identifying which mode is which in step (2B); the faster one is qP, the slower one is ¢S.
Finally, in step (2C), as long as the “gP” mode does not have pure S particle motion
for any propagation direction, defining the “outward” particle-motion direction on the gP
mode to be positive will not lead to an inconsistency. The right hand rule then gives a

consistent sign convention for the ¢SV mode.

!Later on in Figure 3.33 we will see how the limited sort of Fourier-domain discontinuity that occurs
at a singularity can cause a finite plane wave that is actually physical.
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FIG. 3.4. Polar plots of particle-motion direction versus plane wave propagation direction
for “normal” two-dimensional media. The shafts of the arrows indicate particle-motion
direction. Each shaft has an arrowhead on one end, thus labeling that direction as the
“positive” one. This choice is arbitrary, but must be done so that the choice at each arrow
is consistent with the choice at its neighbors. Left: A gP mode. Right: A ¢S mode.

This is demonstrated graphically in Figure 3.4. On the left is a qP mode with the
“outward” direction everywhere chosen to be “positive”. On the right is a ¢S mode with

the sign chosen by a 90° clockwise rotation from the qP one.

What if the modes are anomalous, neither qP nor ¢S? In section 2.3.2, we saw that
the fast and slow solutions for transversely isotropic media in general never touched,
except for special values of Cy3 and Css when they could just touch at isolated points. So
the arguments from the previous paragraphs about steps 1, 2A, and 2B still go through
(although we might have to perturb Ci3 or Css to resolve the point degeneracies if we

happen to have elastic constants corresponding to one of the special cases).

What about the choice of positive particle-motion direction in step 2C? Figure 3.5
demonstrates why this also always works. On the left is a typical “anomalous” mode. The
“outward = positive” method used in Figure 3.4 does not work for this medium. However,
if we simply work around the loop keeping consistent at each step of the way, the loop
still closes properly. On the right is a mode where this method fails. If we attempt to
proceed as before, we find the vector has performed a “half flip” and the loop will not

close. However, the example on the right is impossible: The solutions to equation (2.4)
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FIG. 3.5. Polar plots of particle-motion direction versus plane-wave propagation direction
for exotic two-dimensional media. Left: An “anomalous” mode, neither qP nor ¢S. Right:
An “impossible” mode. No consistent choice of sign for the particle-motion direction is

possible.

are unchanged when k is replaced by —k, and so slowness surfaces for physically realizable
media must have point symmetry about the origin. For any physically possible medium,
only an even number of “half flips” can be performed in one loop about the origin, and

so the loop always closes consistently.? This “impossible” slowness surface lacks this

symmetry.

3.2.4 P works in 3D

In two dimensions we found we could always produce two global pure modes; in three
dimensions we intuitively expect there should be three. The good news is that three-
dimensional gP modes are just as well behaved as two-dimensional ones.

Figure 3.3 shows the slowness surfaces for the familiar isotropic P, SV, and SH wave
modes. Note that as in the two-dimensional isotropic case, the P mode is faster than the
shear modes for all propagation directions. For media not too far removed from isotropy,
there still ought to be a distinct “qP” mode that never intersects the others, and so as in
two dimensions there should be no trouble with the gP mode at steps (2A) or (2B).

What about the choice of sign on the particle-motion direction? First I must precisely

?Later in this chapter in Figure 3.11 we encounter another kind of loop where half-flips are the usual
case.



FIG. 3.6. Slowness surfaces for two different transversely isotropic (TI) media. On the
left is “Greenhorn Shale” (Jones and Wang, 1981); this medium displays the standard
TI “{qP,qSV,SH}” modes. On the right is an “anomalous” transversely isotropic media.
There is still an “SH” mode, but the other two modes (both labeled “A” for Anomalous)
are qP-like for some propagation directions and gSV-like for others.
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define “qP mode”. A global wave mode is a gP mode if the particle-motion direction
V(kz, ky, k.) is not perpendicular to the plane-wave propagation direction k = (kg, ky, k2)
for any (kz,ky,k;) # 0. Similarly, a global wave mode is a g5 mode if the particle-
motion direction V(ky,ky,k;) is not parallel to the plane-wave propagation direction
k = (ks ky, k) for any (kz, ky,k.) # 0. Modes that are neither gP nor ¢S are called
“anomalous”. See Figure 3.6 for examples of “qP”, “gS”, and “anomalous” modes. (Note
my definitions define the various mode types by what they are not: qP modes are nowhere

pure S; ¢S modes are nowhere pure P; anomalous modes are neither gP nor ¢S modes.)

FIG. 3.7. A slice out of a 3-D
slowness surface for an anoma-
lously polarized mode.  Each
particle-motion direction vector
(the “sticks” projecting through
the surface) has one end drawn
thick to indicate that direction
has been chosen as “positive”. At
the top and bottom the mode is
gP-like, but the “positive” direc-
tion points away from the origin
at the top and towards the origin
at the bottom.

For trouble to occur at step (2C) of our algorithm there would have to be some closed
path on the slowness surface along which the signed particle-motion direction vector per-
formed a 180° rotation. However, the defining property of a qP mode is that it does
not have pure S-direction particle motion anywhere. Given a gP mode, then, such a flip
in direction cannot occur: somewhere halfway through the P-direction component of the
particle motion would have to pass through zero as it changed sign. See Figure 3.7 for a
graphical demonstration. (Remember that the particle-motion direction vector v always
has unit magnitude.) Thus there should also not be any difficulty at step (2C) for qP

modes.
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FIG. 3.8. A three-dimensional qP mode-separation example. The medium is orthorhom-
bic, “Cracked Greenhorn Shale” (see Table C.2). The z-z symmetry plane containing the
source is shown. (As we might expect from the discussion at the beginning of this chapter,
the symmetry plane slices don’t show much evidence of the cracks.) The source is a 2
point force; the z component of displacement is shown. The model is periodic. Wavetype
separation works for 3D qP modes. (There is no problem calculating a scalar mode for this
example. It was just convenient to use the same vector algorithm described on page 78
for all the examples in this chapter.)

We conclude that three-dimensional qP modes present no new problems over the two-
dimensional case. (Of course there is no guarantee that a ¢P mode exists; Figure 3.32
shows an example of a medium for which all three wave modes are anomalous, neither gP

nor ¢S.)

3D gqP mode-separation example

Figure 3.8 shows a three-dimensional gP mode-separation example. The algorithm works
as advertised, even though the medium is orthorhombic.

3.3 Shear Singularities

In the previous sections I have shown why mode separation in two dimensions should

always work, and that mode separation in three dimensions should always work for gP
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modes. Is there any reason to expect mode separation in three dimensions to fail for ¢S

modes?

3.3.1 Defining “the” isotropic shear modes

In isotropic media, it is customary to consider the degenerate shear wave as a single
vector pure mode. We typically resolve this globally degenerate mode into “SV” and
“SH” scalar modes, but this choice is arbitrary. Isotropy, with its infinite symmetry, lies
at the intersection of all the various anisotropic symmetry systems. Perturb the elastic
constants away from isotropy and the perfect global symmetry is broken; the shear waves
become nondegenerate.

The standard “{SV,SH}” labels result if we perturb in the direction of transverse
isotropy with a vertical symmetry axis. There are many other possibilities, resulting in
other equally valid definitions of “the isotropic shear modes”. If the SV and SH modes as
shown in Figure 3.3 are arbitrary, why are they so widely used? SV and SH are popular
because they are easy to understand in terms of vertical two-dimensional slices, which is
how we usually look at the Earth. Figure 3.9 shows an example of the bizarre sorts of
modes that usually result if the elastic constants are perturbed randomly.

Previously we saw that the standard SV and SH modes shown in Figure 3.3 have an
artificial discontinuity for vertically traveling waves. Such a point on the slowness surface
where the particle-motion direction becomes a discontinuous function of phase direction is
called a “singularity”. They are usually associated with S or ¢S waves, and so are often
called “shear singularities”. The arbitrary modes shown in Figure 3.9 likewise display shear
singularities in the particle-motion direction field for waves traveling in several apparently
random directions. Singularities are annoying, because they cause discontinuities in the

vector field V at the core of our wavetype-separation algorithm.

3.3.2 Furry ball theorem

Finally we are back to our original question from page 65: Are singularities avoidable?
Pure S-type motion requires that the particle-motion direction be perpendicular to the
direction of plane-wave propagation. In Figure 3.3, the particle-motion direction is repre-
sented by “hairs” attached to the slowness surface. For a pure shear wave, each hair must
lie flat against the ball’s surface. Imagine what happens if you try to comb the hairs on a

furry ball flat and regular everywhere. No matter how you proceed, there must always be
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FIG. 3.9. Shear slowness surfaces for arbitrary isotropic shear modes. Mathematically
these modes are just as valid a decomposition of the degenerate isotropic shear modes as
the standard method shown in Figure 3.3. One singularity is labeled, although several are
visible. (The top plot is the slow (qS2) split shear wave; Figure 3.15 shows another view.)
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a “whorl” or “cowlick” somewhere, where adjacent hairs point in different directions.> We
now have the answer: these discontinuous points are shear singularities, and they cannot
be eradicated. There is no way to define two globally continuous isotropic shear modes.
Shear-wave singularities must always occur for pure S modes, but what about ¢S
modes? Simply apply the previous argument for pure S modes to the pure S component
of the particle-motion direction at each point (i.e., the component of the particle motion
perpendicular to the plane-wave propagation direction). The only way to escape the
singularity is by letting the pure S component of the particle-motion direction go to zero
where we would have had trouble (i.e. the “qS mode” has a pure P-mode direction there:
the “hair” at the center of the whorl sticks straight up). Since the defining property of a

¢S mode is that it does not have pure P-direction particle motion anywhere, this cannot

happen.

3.3.3 What do shear singularities represent?

We know that physical wavefronts do not support discontinuous particle-motion directions.
How can we reconcile this observation with the ubiquity of singularities?

For any phase direction there are three orthogonal modes, so it is impossible for one
wavetype to have a discontinuous particle-motion direction in isolation; at least one of
the other wavetypes must share in the discontinuous particle-motion directions at the
singular point (although rotated by 90°). Precisely at the singular point the particle-
motion directions of these two modes must become indeterminate. This can only happen
if the two modes are degenerate there.

A singularity, then, must correspond to a point where two otherwise continuous and
distinct modes touch and temporarily lose their unique identities (Crampin and Yedlin,
1981). We can see this illustrated in Figure 3.6; the singularity for vertically traveling S
waves (along the k, axis) always occurs on two intersecting surfaces. On the axis particle
motions in the z and y directions are symmetrically equivalent. Figure 3.10 shows the
nature of singular points even more clearly. In this orthorhombic example the ¢S modes
are clearly two separate shells that pinch together at a finite number of singular points.

A shear singularity does not cause a discontinuous particle motion in reality because

for some range of angles around the singular phase direction two orthogonal wavetypes are

3This is a special case of a well known result from differentiable manifold theory: no even-dimensional
sphere has any continuous nonvanishing field of tangent vectors (Boothby, 1975).
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FIG. 3.10. The three-dimensional slowness surfaces of the same orthorhombic medium
shown in Figure 3.2. One octant has been removed to show the true topology: two nested
gS surfaces that just touch at the singularities. (There are four singularities in all; the
other three are symmetrically equivalent to the labeled one.) Neither of the surfaces can

be adequately described as “qSV” or “qSH”.
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strongly coupled together. While individually their particle-motion vectors rapidly twist
around, for any finite frequency their sum remains smooth. (Singularities can produce

other visible effects, however, as will be demonstrated in section 3.5.1.)

3.3.4 ¢S modes are inseparable

I have now shown that any ¢S mode has singularities on it, and that singularities are
places where two modes touch. If there are two ¢S modes that are both everywhere slower
than a single gP mode, then the two ¢S modes must be touching each other. Does this
automatically mean mode separation of ¢S waves is impossible? How does trouble occur?

At step (2A), we must expect occasional trouble with nonunique ¢S solutions in three
dimensions, because shear-wave singularities represent degenerate directions. A typical
way around such problems in ray tracing is to perturb the elastic constants so that the
singularity moves off our current ray direction (Jech and Psencik, 1989). This procedure
shouldn’t create significant errors since a tiny perturbation in the elastic constants should
only cause a tiny change in the global wavefield. (We are still left with the problem of
figuring out which of the barely split modes is the one we want.)

Steps (1) and (2B) of our algorithm presuppose we know what the global ¢S modes
look like. (I haven’t even yet proven that there is such a thing as a global ¢S mode for
general anisotropy!) The isotropic modes are usually separated into {P,SV,SH}, and the
transversely isotropic modes into {qP,qSV,SH}, but we have seen these designations are
arbitrary at best. Is there any sensible way to separate the connecting ¢S surfaces into
two ¢S pure modes for completely general anisotropic media?

The example in Figure 3.10 suggests one possibility. We wish to cut the two-sheeted
gS surface in this figure into two pure modes. We cannot do this arbitrarily. Step (2B)
of our algorithm requires that the three plane wavetypes at each (kg, ky, k;), {v1, v2, vs},
must be identified as a permutation of the three global wave modes (usually {qP,q51,9S2})
evaluated for that phase direction. The three resulting pure modes must be unique single-
valued continuous functions of phase velocity versus plane-wave propagation direction. (In
fact I would say this must be the definition of a global pure mode.) As should be clear
from Figure 3.10, the only possible place to cut is at the shear singularities.

This definition makes the modes very easy to identify computationally; the modes are
simply sorted on their phase velocity (w/k) into an inner (fastest) gP, a middle ¢S1, and
an outer (slowest) ¢S2 mode (Crampin, 1981). (Of course while this method is the most



_78-

general, it still may make sense to use notations such as {gP,qSV,SH} when appropriate
— although these symmetric notations are misleading, as will be shown in section 3.5.1.)

Unfortunately, as can be seen in Figure 3.11, sorting the modes by phase velocity does
nothing to ameliorate the particle-motion discontinuity at the shear singularities. As I will
demonstrate in the next section, this local discontinuity in the Fourier domain produces a
large planar artifact in the space-domain version of the corresponding wavetype-separation
operator, although it can be suppressed in certain special cases.

We have seen there are troublesome problems at step (2B). What about step (2C)?
Figure 3.11 shows most of the particle-motion direction vectors as two-sided, since math-
ematically there is nothing in equation (2.4) to distinguish any eigenvector v from its
opposite —v. I have attempted to pick one sign as “positive” for each particle-motion
vector along a path (shown as a dotted line) around the singularity; these vectors are
shown as one-sided rays. Unfortunately if we pick the vectors to preserve continuity as we
move along the path, we find the signs don’t match when we complete the loop. There is
an inescapable branch cut in step (2C).*

This branch cut makes a mess of any attempt to construct a pure-mode scalar field. If
we are satisfied merely to separate the wavetypes, however, we can avoid the sign-choice

problem by using a slightly modified algorithm:
(3.)) Fourier transform U(z,y, z;t) over z, y, and z, obtaining ﬁ(kz,ky, k.;t).
(4.") For all (kg, ky, k,):

{

NM(kg, by, kzi 1) = V(ke, kys k) (V(ka, kys ko) Oke, ky, k23))

}

(5./) Inverse Fourier transform M(kz, ky, k;;t) over kg, ky, and k., obtaining M(z, y, 2;t).

The branch cut does not adversely affect this operator because the sign of v enters the

equation twice, and so cancels out.

*This is an example of a phenomenon of much current interest in quantum physics, anholonomy (Berry,
1990). The basic idea is that after some parameters of a system have been perturbed around a closed
loop in a continuous way, some other seemingly unrelated parameters are found to have changed sign or
otherwise shifted in phase.
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FIG. 3.11. A close-up view of the outer surface in Figure 3.10, centered on the shear
singularity (here indicated by an “S”). Note that the particle-motion directions become
discontinuous at the singularity. There is a more subtle disturbance at the singularity as
well. Most of the particle-motion direction vectors are drawn two-sided. For the vectors
along the dotted path looping around the singularity, however, we have attempted to pick
a preferred “positive” direction and so these are drawn one-sided. Once we make a choice
of sign at the beginning, we are constrained at each step to choose the direction consistent
with the previous choice. Unfortunately, the continuity we have carefully maintained going
around the loop is lost at the end; the choices at the beginning and end of the loop do not
agree. Contrast this situation with the one in two dimensions shown in Figure 3.5.
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Original Wavefield gP removed

Only gS1 Only qS2

FIG. 3.12. Three-dimensional ¢S mode-separation examples. The plot and parameters are
like those in Figure 3.8, except this time the ¢ component of displacement is shown and
a gpow of .8 has been applied to make weak events more easily visible. Upper left: The
original wavefield. Upper right: The gP mode has been successfully nulled. Lower left:
Trying to pass only the gS1 wave causes artifacts. Lower right: The qS2 wave likewise
doesn’t work by itself. The sum of the two lower plots gives the upper right plot.
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Attempt at SV Perturbed SV

FIG. 3.13. Two attempts at defining and separating a three-dimensional ¢SV mode. The
plot and parameters are like those in Figure 3.12. Left: For each (k;,ky,k;) the ¢S
plane-wave mode with particle motion more nearly “SV” was chosen. This pseudo-mode
does not have a continuous phase-velocity function. Right: The orthorhombic elastic
constants were perturbed to become transversely isotropic, and the wavetype-separation
operator appropriate for the qSV mode for the perturbed TI medium was applied to the
original orthorhombically anisotropic wavefield. As a result the gP mode is not completely

nulled.

This new wavetype-separation operator does not attempt to collapse the vector wave-
field onto a scalar pure mode M. Instead it nulls the two unwanted wave types while
passing the desired pure-mode component through unchanged. Since M is a vector wave-
field like U, some important manipulations become easier than they would be with a scalar
mode like M. For example, we can construct the difference U — M; this nulls a single
wavetype instead of passing a single wavetype.

Unfortunately, the fundamental problem of particle-motion discontinuities at shear
singularities remains. There is no solution to this problem; it is a consequence of the basic
inconsistency between the “furry ball” theorem and the definition of a ¢S “pure mode”.

I conclude that in general anisotropic media it is not possible to cleanly separate the
“gS1 and ¢S2 modes”. The particle-motion discontinuity at the singularities will always
cause the two modes to leak energy into each other. This mode-mode coupling is
especially bothersome for elastic ray tracing in three dimensions. It is possible to handle

the coupling, but only by propagating the two not-quite-distinct shear modes together
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(Chapman and Shearer, 1989). While it may often prove useful to differentiate two qS
waves for some set of propagation angles, globally they are inextricably linked and cannot

be cleanly separated.

3.3.5 Examples

Figure 3.12 shows how this works in practice. The upper left plot shows the trial input
wavefield. In the upper right plot the gP wave has been successfully removed. In the lower
two plots I have attempted to pass only the qS1 or ¢52 pure modes. The Fourier-domain
particle-motion discontinuities at the shear singularities create strong planar artifacts that
can be seen to wrap around several times. The artifacts have opposite signs on the ¢S1 and
qS2 plots; when the two ¢S modes are summed the artifacts cancel and the “qP removed”
plot results.

For these models a z source was used. Since the only particle-motion discontinuity
for SV modes is for vertically traveling shear waves, which are unexcited by a 2 source,
we might expect an SV mode-separation operator to be more tractable. There are two
possible approaches to use; Figure 3.13 shows both of them.

In the left example in Figure 3.13 for each (k;,ky,k.) plane-wave direction I have
chosen the mode that most nearly fits the designation “SV”. Sure enough, this operator
picks out something resembling an SV mode, but the resulting wavefield is cluttered by the
artifacts caused by both the particle-motion direction and phase-velocity discontinuities.

In the right example in Figure 3.13 I have perturbed the elastic constants of the
wavetype-separation operator to become transversely isotropic. (This was easy to do,
since the original orthorhombic elastic constants were generated by numerically “cracking”
(Schoenberg and Muir, 1989) transversely isotropic Greenhorn Shale (Jones and Wang,
1981) in the first place.) For the perturbed medium there is a true qSV mode, and so the
separation works (given the z source used in this example). The qP mode does slightly

leak through because the elastic constants don’t quite fit the medium, however.

3.4 Classifying singularities

Clearly singularities are one of the more important features of slowness surfaces; how do

they change when the underlying elastic constants are perturbed?



FIG. 3.14. Successive perturbations away from transverse isotropy. (The plots are ordered from
left to right and then top to bottom.) The first (top left) plot corresponds to the TI medium
shown in the top plot in Figure 3.6. Only the outer qS2 wave is shown here. The view is from the
“North Pole”: the +k, axis points directly out of the page, the +k, axis points to the bottom of
the page and the +k, axis points to the right. For the second (top right) and third (middle left)
plot successively more cracks are added in the z-z plane. Starting with the fourth (middle right)
plot the first set of cracks are held constant and more and more cracks are added in the y-z plane
instead. For the fifth plot (lower left) the amount of z-z and y-z cracking are the same.
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Figure 3.14 shows a succession of qS2 slowness surfaces as the elastic constants are suc-
cessively perturbed away from transverse isotropy. The first plot is transversely isotropic.
Cracks are then added in the z-z plane to perturb the elastic constants to become or-
thorhombic (Nichols, Muir, and Schoenberg, 1989). The TI kiss singularity at the center
of the plot splits into two point singularities on the k, axis, a typical configuration for
orthorhombic media (Crampin and Kirkwood, 1981). Starting with the fourth plot in
the sequence the z-z cracks are held constant and another crack set is added in the y-z
plane. The singularities move back towards the center and converge back into a single
kiss singularity when the amount of cracking in the two perpendicular directions is equal.
As the cracking in the y-z plane becomes dominant in the last plot, the kiss singularity

bifurcates again, this time along the k, axis.

FIG. 3.15. Another view of the (‘

upper plot in Figure 3.9. A Sas- k
katchewan shaped portion of the X
slowness surface containing the /’C!T

three point singularities visible

near the +k, axis has been cut 7:[
+—

out and rotated to the front. (Ide=——

ally, Saskatchewan is bounded by

two lines of constant latitude and

two lines of constant longitude.)

EIINL’T

This behavior suggests to me an alternative notation for singularities that has some
advantages over the “{point, kiss, intersection}” terminology now in common use. (This
notation was first introduced by Crampin and Yedlin (1981), and more recently has been
discussed by Winterstein (1990).) I suggest that singularities could be classified by the

number of half-loops the particle-motion direction vector completes in one loop around the
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FIG. 3.16. This sequence of four plots (left to right and then top to bottom) shows how the
particle-motion directions change as an orthorhombically anisotropic medium is perturbed
to become generally anisotropic. Two singularities of opposite sign appear together out
of nowhere and then separate. Figure 3.15 forms the fifth plot in the sequence and shows
the orientation of all of the plots. The elastic constants are given in Note 3 on page 169.
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singularity, reminiscent of integration around residuals in complex analysis. In particular
it is possible for the particle-motion vector to rotate in the same sense as the loop is
traversed (+) or in the opposite sense (—). This seems to be a fundamental property of
singularities that is robust against perturbations in the elastic constants; the sum about
a group of singularities also appears to be conserved when two of them merge or a double
one splits.

Figure 3.11 shows a canonical example of an order +1 singularity; the particle-motion
direction vector performs a half flip in the same direction as the traverse around the
singularity. In Figure 3.14 the order +2 singularity on the k, axis at the center of the
plot splits into two order +1 singularities. Although harder to see, the infinity of order 0
intersection singularities (the dark circle halfway out from the center in the first plot in
Figure 3.14) splits into 4 order +1 singularities (on the k; and k, axes) and 4 order —1
singularities (in between).

The labeled “point” singularity in Figure 3.9 shows a clearer example of an order —1
singularity (the two adjacent ones are each of order +1).° Figure 3.16 shows how this
singularity spontaneously appears as part of a singularity-antisingularity pair as originally
orthorhombic elastic constants are perturbed more and more. The original order +1
singularity of the orthorhombic medium moves slightly but cannot split, since the particle-

motion direction vector must complete an integral number of half-flips.

3.5 Some canonical modeling examples

In this section I use elastic finite-difference-modeled wavefields to illustrate some of the
more interesting possible properties of wave propagation in three-dimensional anisotropic

media.

3.5.1 Perturbing TI

In section 3.4 we saw that relatively small changes to the elastic constants could cause

fairly dramatic topological changes in the singularities. Intuitively we expect that small

5A closely related classification scheme for “umbilic points” on surfaces is described by Berry and
Hannay (1977). My order —1 singularity they would call a “Star” singularity, which has “index —1/2”.
My order +1 singularity they would call a “Lemon” singularity, which has “index +1/2”. They also
describe one more possible singularity type, the “Monstar”, which also has index +1/2. I have not been
able to generate an example of a “monstar” shear singularity.
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perturbations in the material properties of a medium should only be able to cause small
changes in the associated wavefield. Is it possible for topological changes in the singularities
to cause noticeable effects in the resulting wavefield, even when the change in the elastic
constants is small?

Figure 3.17 shows two slices through a three-dimensional wavefield snapshot. (The qP
mode has been nulled so I can squeeze as much resolution out of the 1283 finite-difference
model as possible.) One slice is oriented lies in the z-z plane, the other is oriented at 30°
to the z-z plane. For each orientation two plots are shown; one shows displacement in
the SV direction, the other in the SH direction. (Note I am using “SV” and “SH” here as
directions, not as labels for modes.) The source is a pure z point force.

There are two things to note in Figure 3.17. First, the two sets of plots appear to be
identical. This is because the medium is transversely isotropic, and so the two orientations
are in fact symmetrically equivalent. Second, there appears to be no SH motion at all.
Since the medium is transversely isotropic there is a pure SH mode; this mode is orthogonal
to the 2 source and so is not excited.

We now take Figure 3.17 and perturb the elastic constants by adding cracks in the
z-z plane. (The cracking is not severe, only enough to slow the qSV wave propagating
perpendicular to the plane of the cracks by about 5%.) Given the qSV and SH modes of
the original transversely isotropic medium shown in Figure 3.17 and the relatively small
perturbation to the elastic constants, we would expect to see something like ¢SV and qSH
modes in the cracked medium. Figure 3.18 shows the actual results. As expected, the
SV plots look much the same as before. The SH plot in the z-z symmetry plane is again
zero. The SH plot at 30° appears quite strange, though. There is a “qSH” wavefront
dimly perceptible (maybe not, depending on the reproduction quality of your copy!), but
far stronger is a perplexing nearly planar event that connects the expected “qSV” and
“qSH” wavefronts, but corresponds to nothing in transverse isotropy. What is going on?

The problem is that our intuition has been learned from studying highly symmetric
two-dimensional examples (or, even worse, isotropy). In Chapter 2 we encountered several
examples where events would disappear just at certain exceptional values of the elastic
constants. (For example, compare cases 1 and 10 in Figure 2.4 on page 24 with the cor-
responding finite-difference results in Figures 2.7 and 2.8 on pages 32 and 33.) One could
not understand transverse isotropy by studying only such special cases. Unfortunately

two-dimensional anisotropy itself, with many elastic constants held equal, is just such a
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SV, 0° SH, 0°
.866x+.5 866 x + .0 Yy

SV, 30° SH, 30°

FIG. 3.17. Four slices through a three-dimensional Greenhorn Shale (Jones and Wang, 1981)
snapshot, corresponding to the medium shown in the top left plot in Figure 3.16. The gP wave has
been nulled to allow the maximum resolution on the shear waves. (The original model had 1283
gridpoints; the slices are through one octant.) The source is a z point force at the lower left corner.
The top row shows slices through the z-z plane, the bottom row shows slices rotated 30° about the
z axis out of the z-z plane. (This slice is wider because the snapshot cube is being cut at an oblique
angle.) The left column shows the component of displacement in the SV direction (i.e. in the plane
of the slice and perpendicular to a vector pointing away from the source). The right column shows
the component of displacement in the SH direction (i.e. perpendicular to the plane of the slice).
Theoretical impulse-response curves for the ¢SV (finer dashes) and SH (coarser dashes) modes for
this medium are overlayed on the plots. Since the medium is transversely isotropic and the source
is aligned with the symmetry axis, the 0° and 30° slices are equivalent.
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SV, 0° SH, 0°
.866 x + .0y 866 x + .0y

SV, 30° SH. 30°

FIG. 3.18. Four slices through a three-dimensional Cracked Greenhorn Shale snapshot, corre-
sponding to the medium shown in the middle left plot in Figure 3.16. (The elastic constants are
listed in Table C.2.) The parameters of the four plots are the same as for the corresponding plots
in Figure 3.17; the only difference is the underlying elastic constants have been perturbed to break
the axisymmetry. The same Greenhorn Shale theoretical impulse-response curves used in the pre-
vious figure are overlayed again here. This time the elastic constants are somewhat different, so
there’s no guarantee they’ll fit as well as they did in the previous figure. For the 0° (z-2) slice the
overlayed curves fit exactly anyway, and for the 30° SV-component plot they are only slightly off.
For the 30° SH-component plot, though, something unexpected happens. Instead of some sorts of
“gSV” or “gSH” waves as we might expect, mostly we see a short nearly planar wavefront. (Its
amplitude is about 15% of that of the primary “gSV” wave.)
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FIG. 3.19. The three-dimensional shear slowness surfaces for “Cracked Greenhorn Shale”,
which is just Greenhorn Shale perturbed by adding fractures in the z-z plane. Compare
this figure with the unperturbed version, the top plot in Figure 3.6 on page 70. This time
I have rotated the medium 60° so that the edges of the cut-out octant do not line up
with the symmetry axes of the medium. At first glance, the topology appears the same as
before. Figure 3.20 shows a high-resolution view of the region inside the rectangle, which
shows the true topology. (The middle left plot in Figure 3.16 shows yet another view of
this same three-dimensional surface.)
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FIG. 3.20. A close-up view of Figure 3.19 showing the true topology. (Remember, I use
the darkness of the surfaces to show the associated particle-motion direction, SV motion
being darker and SH motion lighter.) Like the orthorhombic medium in Figure 3.10, this
orthorhombic medium displays inner ¢S2 and outer ¢S1 surfaces that touch at a small
number of discrete points (singularities). One such point, a singularity of order —1, is
visible as the black dot a little to the right and below top center.
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special case.®

“Connections”

So where does the mysterious event come from?

Figure 3.19 shows the three-dimensional slowness surfaces for the cracked medium. It
appears very much like the unperturbed TI medium shown in the top plot in Figure 3.6,
but there is a crucial difference, as can be seen clearly in Figure 3.20. The formerly distinct
gSV and SH modes have crossed over and recombined to form new ¢S1 and ¢S2 modes.
For the most part, these new shear surfaces can be thought of as virtually unchanged

patched-together fragments of the old ¢SV and SH surfaces, and hence I like to call them

“chimeras””.

This “exchanging identity without quite touching” phenomenon is quite common in
physics. Spheroidal normal modes of the Earth are another good geophysical example.
A plot of frequency versus angular order for these modes seems to show distinct sets of
crisscrossing parallel lines. Upon close examination, however, the parallel lines prove to
be an optical illusion formed by a series of noncrossing curves each shaped like a set of

staircase steps. (See for example Figure 17 in Gilbert and Dziewonski (1975).)

This sort of behavior can be modeled using extremely simple mathematics; take for
example the equation y? = z2. We would probably write the solutions to this equation as

y:{x . (3.1)

-

However, if we used instead the perturbed equation y? = z? + ¢, we would write the
solutions as

N
y:{_ R . (3.2)

®Thus we find that all two-dimensional anisotropy is inherently dishonorable! (Recall the epigraph on
page 9.)

"I’m using a biological analogy here; the operative definition of “chimera” from Webster’s (Woolf, 1975)
is “an individual, organ, or part consisting of tissues of diverse genetic constitution and occurring esp. in
plants at a graft union”. (Although one of the other listed definitions, “an imaginary monster compounded
of incongruous parts”, might be more appropriate here!)
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By letting € — 0 we find an alternate solution set for the original equation,

y= { ol (3.3)

—|=|

For our cracked Greenhorn Shale example, “€” is the perturbation of the Christoffel ma-
trix C away from transverse isotropy. This “€” effectively vanishes in the orthorhombic
symmetry planes.

These topological details of solution sets are usually a mere curiosity, but for our
perturbed transversely isotropic example they turn out to be significant. It is the novel
parts of the ¢S1 and ¢S2 surfaces in Figure 3.20 where they approach but don’t quite
touch that create the new event seen in Figure 3.18. (Kawasaki (in preparation) similarly
finds that for an azimuthally anisotropic earth such “chimeric” effects need to be taken
into account when inverting earthquake surface-wave data.) To see how this relatively
small change in the slowness surfaces can be significant, we will now examine the relevant
three-dimensional impulse-response surfaces.

We begin with Figure 3.21, which shows the three-dimensional shear impulse-response
surfaces for unperturbed Greenhorn Shale. The elliptical SH mode in three dimensions
becomes a prolate ellipsoid, while the cusped ¢SV mode becomes a sort of flanged barrel.
Figures 3.24 and 3.22 show the corresponding qS1 and ¢S2 modes for Cracked Greenhorn
Shale. The thick lines correspond to the thick lines in Figure 3.19. Note that although
they lie in a plane in the slowness domain, they definitely do not in the group domain. (I
would have shown both surfaces together, but found the resulting tangle of intersecting
surfaces too complex to visualize easily. To give some idea of the relative positions of the

qS1 and ¢S2 surfaces, [ have shown the thick lines for both surfaces in both sets of plots.)

The impulse-response surfaces shown in Figures 3.24 and 3.22 combine gross elements
of the surfaces visible in Figure 3.21, but some new features are also visible. The surface
shown in Figure 3.24 is adorned with thin disks hovering just above the remainder of the
top surface, and attached only at a relatively small region at the center. The disks fit
into the holes visible in Figure 3.22. The outer rims of the disks (and the inner edges of
the holes) correspond to the point singularities visible in Figure 3.19. (The outer surface
of the disks are usually called “lids” in the literature (Crampin (1981), but there seems
to be some confusion about what the term “lid” precisely means. I will avoid using the

term until after I have given better examples of the topology of the singularities, notably
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in Figures 3.30, 3.33, and 3.34.)

Another apparent difference is the larger cusps in Figure 3.24. The topology of the two
intersecting shear surfaces is complex; Figure 3.26 shows where the extended cusp comes
from more clearly. The concavity visible on the ¢S2 surface in Figure 3.20 corresponds
to a cusp on the associated impulse response, just like the one on the ¢SV surface of
Greenhorn Shale did in Chapter 2. This cusp comes from a small region of the slowness
surface, and so should not be too significant energetically. However, this cusp is exactly
what we were seeing back in Figure 3.18; Figure 3.27 shows this more clearly. How is this
possible?

Figure 3.26 very much appears like the unperturbed qSV and SH surfaces of Greenhorn
Shale, plus a new event I will call a “connection”. The connection comes from the ring
along which the original qSV and SH surfaces intersected, but where the new ¢S1 and
qS2 surfaces merely appulse in a “ring pinch” (except at the few point singularities)
(Crampin and Yedlin, 1981). Points in the phase-slowness domain correspond to plane-
wave components in the impulse-response domain, so the connection lies where there was
a common plane-wave component of the original ¢SV and SH modes (i.e. it is tangent to
both).

A connection can have a significant effect by providing a channel for coupling the
ersatz “qSV” and “qSH” modes. In the Cracked Greenhorn Shale example used here, the
connection roots into the gSV mode in the middle of the high-amplitude cusp, and acts to
provide a channel along which some of this energy can drain away into the “qSH” mode.
Since at the same time the particle-motion direction also slowly rotates to include more
and more SH motion, it manages to show up strongly on the SH snapshot slice. This sort
of anisotropic behavior provides an ideal vehicle for coupling a vertical P source into a
horizontal SH receiver, even for media that otherwise are virtually transversely isotropic.
Note that connections should only be significant well off of the symmetry planes. To me
this suggests that deliberately trying to record seismic data only along suspected symmetry
planes is a questionable practice.

Ray tracers should note that while the SH component in the 0° symmetry plane in
Figure 3.18 is exactly zero for all wavetypes, as it must be by symmetry, the SV component
of the connection in the symmetry plane is nonzero (although quite weak). This event is
in fact a non-ray wave. Unfortunately the connection on the 0° SV plot in Figure 3.18 is

not visible on the hardcopy, although it is dimly visible on a good screen.
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FIG. 3.22. The three-dimensional ¢S1 impulse-response surface for Cracked Greenhorn
Shale corresponding to the slowness surfaces shown in Figure 3.19. This figure is the left
element in a stereo pair; Figure 3.23 is the corresponding right element. The isolated thick
lines show the position of the omitted qS2 surface.
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FIG. 3.23. The three-dimensional ¢S1 impulse-response surface for Cracked Greenhorn
Shale corresponding to the slowness surfaces shown in Figure 3.19. This figure is the right
element in a stereo pair; Figure 3.22 is the corresponding left element. The isolated thick
lines show the position of the omitted qS2 surface.
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FIG. 3.24. The three-dimensional ¢S2 impulse-response surface for Cracked Greenhorn
Shale corresponding to the slowness surfaces shown in Figure 3.19. This figure is the left
element in a stereo pair; Figure 3.25 is the corresponding right element. The isolated thick
lines show the position of the omitted ¢gS1 surface.
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FIG. 3.25. The three-dimensional ¢S2 impulse-response surface for Cracked Greenhorn
Shale corresponding to the slowness surfaces shown in Figure 3.19. This figure is the right
element in a stereo pair; Figure 3.24 is the corresponding left element. The isolated thick

lines show the position of the omitted ¢S1 surface.
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FIG. 3.26. A slice through the 3D impulse response surface for Cracked Greenhorn Shale,
oriented to correspond to the 30° slices in Figure 3.18. Topologically there are distinct
gS1 and ¢S2 surfaces, but the effect is very much like that of ¢SV and ¢qSH surfaces with a
“connection” spanning the tangents to those surfaces. This figure also illustrates a couple
of other interesting counterexamples. Note that the ¢S2 wave arrives first for a small
range of angles near the upper edge of the old ¢SV cusp, even though by definition the
gS2 mode has slower phase velocity for all phase directions. The connection itself consists
of two closely spaced linear events; the two parts are portions of the ¢S1 and ¢S2 modes.
Particle-motion directions for a given phase direction are guaranteed to be perpendicular
for distinct modes. This is usually almost true in the group domain as well. For this
example, however, at the top of the connection, where it roots into the former qSV mode,
both modes have nearly pure SV polarization. At the bottom of the connection, where
it roots into the former SH mode, both modes have nearly pure SH polarization. (In
between, the particle motions perform the transition by rotating in opposite directions.)
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FIG. 3.27. A reprise of Figure 3.18, this time showing the correct impulse-response surfaces
for Cracked Greenhorn Shale (on the right). A gpow of .7 on the snapshots (left) has been
applied to make weaker events more visible. An attempt has been made to show the
proportion of the theoretical modes’ particle-motion direction aligned with the pure SV

and SH directions by shading the curves appropriately (although the shading has somewhat
run afoul of the halftone dithering pattern).
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3.5.2 Anatomy of a singularity

We have seen that singularities are important topologically, and that in certain cases the
topology of the wave modes case create significant events such as “connections”. But
can the singularities themselves cause any significant propagation effects? I begin by

examining the topology of point singularities in the impulse-response domain.

A canonical orthorhombic example

Figure 3.28 shows the ¢S slowness surfaces for a simple orthorhombic medium. This
medium has four widely spaced singularities of order +1, all lying in the ky-k, plane.
For the example here I have rotated the medium about the k, axis to line up one of the
singularities with the +k, axis. Figure 3.29 shows the corresponding impulse-response
surfaces. The geometries of the slowness and impulse-response surfaces seen here seem to
be much the same: two surfaces intersecting at a point forming a shallow double cone. In
one case the center of the cone is on the k, axis; in the other the center is off to one side.

In either domain one could imagine cutting the inner and outer surfaces apart at
the intersection point and labeling those as the two ¢S pure modes. Unfortunately the
resulting classification would not be consistent between the two domains, because the
intersection point in the group domain does not correspond to the singularity. What on
the impulse-response surfaces does correspond to the singularity?

As is shown in Appendix B, the group direction is perpendicular to the tangent to the
slowness surface at each point. As can be seen in Figure 3.28, at the singularity the tangent
becomes discontinuous. In fact the point singularity in the slowness domain maps to a cone
of directions in the impulse reponse. (This phenomenon is well known in crystals, where
it can be directly observed as the phenomenon of internal conical refraction (de Klerk
and Musgrave, 1955). For our example in Figure 3.28, one of the possible tangents at the
singularity is for a constant-velocity surface (circular in two-dimensional cross section).
Since for that case the group and phase directions are the same, the +z axis in the impulse-
response domain in our example must mark one point along the cone of singular directions.
The singularity in Figure 3.29 is the annular gap containing the +2z axis.

In fact there is more to the singularity than that. As shown by Burridge (1967), the
“dimple” on the impulse-response surface is made convex by the additional presence of a

planar event stretching across the concavity. This event, called a “plane lid” by Burridge,
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FIG. 3.28. The ¢S slowness surfaces for a particularly symmetric orthorhombic medium.
This medium has a global pure P mode and pure SH and SV modes in each symmetry
plane. In each symmetry plane one of the shear modes is elliptical and the other is circular.
The medium has been rotated about the z axis to position one of the singularities on the
+k, axis; thus, only the ky-k, axial plane is still one of the three planes of symmetry. In
order to show the topology of the singularity more clearly, only alternate latitude bands
are shown, and those only from latitudes 45° to 90°. One 90° sector has been omitted to
allow a view of the singularity.
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FIG. 3.29. The ¢S impulse-response surfaces corresponding to the slowness surfaces in
Figure 3.28. The point singularity in the previous figure corresponds to the annular gap
containing the 42 axis. (The line leaving the figure to the left is the —y axis.) Note that
the dark axial lines marking the k,-k, plane abruptly bend as they approach the annulus
marking the location of the singularity. This is because the singularity in the slowness
domain was a fraction of a degree out of the k,-k, plane. The axial lines do not cross the
ring of the singularity in the group domain but detour around it instead.
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FIG. 3.30. A cross section through the y-z plane of the surface shown in Figure 3.29. The
¢S1 wave mode is shown by a black line, the ¢S2 wave mode is shown by a dark stippled

line, and the plane lid by a thin dotted line.

FIG. 3.31. The finite-difference model result corresponding to Figure 3.30. The modeled
wavefield was generated by a y point source, but the z component of particle motion is
shown. This emphasizes wave components with intermediate polarization directions, such
as occur around the singularity. The slice is displaced slightly out of the plane containing
the source (in the symmetry plane the z component is zero).
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is the plane-wave component of the impulse response corresponding to the singularity.
The cone of singular directions previously described marks the edges of the plane lid, in
this case shaped like a circular disk. Figure 3.30 shows the position of the plane lid on a
cross section through the y-z symmetry plane of the impulse-response surface. (The plane
lid is omitted in Figure 3.29.) Figure 3.31 shows a corresponding cross section through a

finite-difference model snapshot.

A triply connected example

Burridge (1967) found that the singularities of cubic nickel had “plane lids”, and derived
their amplitudes. Later Crampin (1981) pointed out that the “lids” of orthopyroxene are
shallow cones, not planar. Are they both right?

Figure 3.32 shows all three impulse-response surfaces for a complex orthorhombic
medium. This medium is interesting in several ways. All three wave modes are anoma-
lously polarized. All three wave modes are connected by singularities; there is no separable
gP mode. In the next few figures I will examine the properties of the singularity in the
y-z symmetry plane on the fastest wavetype; it is particularly amenable to study since it
is part of the first-arriving wavefront.

Figure 3.33 shows an annotated slice of the impulse-response surface in Figure 3.32
along the y-z symmetry plane. Note this example shows two distinct kinds of “lids”:
Burridge and Crampin were both right, but were talking about different things. I will
follow their lead by calling one kind a “plane 1id” versus just plain “lid” for the other.

I define a plane lid as the portion of the impulse-response surface corresponding to the
point singularity in the slowness domain. It is a planar surface that stretches across what
otherwise would be a concavity in the impulse-response surface, and is bounded by the
cone of singular directions associated with the singularity. Its presence keeps the surface
convex. I define a lid as the outermost part of the impulse-response surface within the
region bounded by the cone of singular directions associated with the point singularity
not counting the “plane lid” generated by the singularity itself. This part of the impulse-
response surface will be concave, and although faster in the group domain will be part of
the slower of the two wavetypes in the phase-slowness domain. Some highly symmetric
media, such as Burridge’s cubic nickel example and the example in Figure 3.28 do not
exhibit a lid because it has contracted to a point in the slowness domain and merged with

the plane lid.
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FIG. 3.32. Impulse-response surfaces for a “triply connected” anomalously polarized or-
thorhombic medium. All three surfaces have singularities, even the first-arriving one.
Since the surfaces are anomalously polarized, the standard anisotropic notation “{qP,
gS1, ¢52}” does not apply. A general notation proposed by Muir (1989) extends the origi-
nal meaning of “P” and “S” to sort the three wavetypes noncommittally by phase velocity
as “{P, S, T}”, for primero, secundo, and tertio.
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FIG. 3.33. An annotated slice through the y-z plane of the surfaces in Figure 3.32. The
three surfaces are labeled following Muir’s {P, S, T} convention. The P and T surfaces
are drawn thick and stippled, while the intermediate S surface is drawn thin and black.
The lid is part of the S wavefront. (The plane lid is omitted in Figure 3.32, and is shown
here with a thin dotted line.) Note the two points marked “Singularity” correspond to
the same point singularity in the slowness domain.
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FIG. 3.34. As Figure 3.33, but rotated 5° out of the y-z symmetry plane to better show the

true topology. The intermediate-velocity S surface appears as two disjoint pieces in this
slice, although in three dimensions the parts form one continuous surface that intersects
itself in the y-z plane.
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FIG. 3.35. Various non-symmetry-plane slices through the impulse-response surface in
Figure 3.32 with corresponding finite-difference results. The source for the finite-difference
model is a y point force. The SV component of the particle-motion direction is shown.
The plane lid also shows exists in the longitude 75° slice, but is too close to the lid to be

visible in either representation.
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FIG. 3.36. Finite-difference results corresponding to three non-symmetry-plane slices
through the impulse-response surface in Figure 3.32. The slices are the same ones used in
Figure 3.35, but for this plot the P and SH components of the particle-motion direction
are shown.
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What about the three-dimensional topology of the singularity shown in Figure 3.337
In the example in the previous section (Figure 3.29), we saw that there was a point where
the impulse-response surfaces crossed through themselves forming a shallow double cone.
This was an accident of the high symmetry of that example; Figure 3.34 shows the true
topology of the surfaces in Figure 3.32 revealed by cutting on a non-symmetry plane. The

intermediate S surface in this example intersects itself in a line, not a point.

Finite-difference model results

The lid and plane lid are distinguishable in Figure 3.34, but can they also be distinguished
in a finite-difference model result? Figure 3.35 shows several non-symmetry-plane slices of
the impulse-response surfaces in Figure 3.32 along with the corresponding finite-difference
snapshot slices. The top right plot shows a dark (—) event preceding the main lid (which
appears white (+) here) and filling in the concavity in it. This should be the plane lid,
since it occurs in the right place and seems to exhibit the necessary properties, but the
result needs to be backed up by further analytical calculations to be sure. Figure 3.36
shows the other two particle-motion components of the finite-difference model results at
the same clip levels as in Figure 3.35. The plane lid exists in these plots as well, but is

too weak to show up on these plots.

Can singularities cause visible effects?

I still have not answered the original question of this section: can the singularities them-

selves cause significant propagation effects?

In Figures 3.35 and 3.36 the direct effect of the singularity, the plane lid, was a subtle
feature of the wavefront. On the other hand, the singularity showed up very strongly in
Figure 3.31. In that example the y source and z receiver are at right angles; the swirl
of particle-motion directions around the singularity provides a good coupling mechanism
and makes the singularity stand out.

These examples indicate that direct effects such as plane lids are not very significant,
but that the local disturbance to the particle-motion direction field caused by a singularity

can be. This latter effect will show up again in the next section.
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3.5.3 What should 3D anisotropy look like?

So far in this chapter I have shown only model snapshots. In this section I will show some
seismograms to go with two of the models examined in the previous section. This is meant

to give some idea how the effects previously noted might appear on surface data.

What should a connection look like?

Figure 3.37 shows model sections recorded over a homogeneous half-space of “Cracked
Greenhorn Shale” (described in section 3.5.1) at two different azimuths, along the cracks
(azimuth 0°) and at an acute angle to the cracks (azimuth 30°). The model and plot
parameters of this plot are the same as those for Figure 2.21 on page 48, although the
example in Chapter 2 is not directly comparable. That model medium had a different
value of Cy3 and so does not triplicate as strongly as the example here.

The diagnostic orthorhombic effect, the “connection”, shows up strongly on the “SH,
30°” plot. The other three plots, however, reveal very little evidence that the model
medium is not transversely isotropic Greenhorn Shale. The connection event also nearly
disappears for sections oriented along azimuths 90° and 45°. This suggests that to observe
orthorhombic effects in the field it is necessary to record both along suspected symmetry
directions as inferred from the regional crack directions and at other arbitrary angles
unlikely to correspond to any special symmetry. It is also beneficial to record the “null”
sections such as Z source into SH receiver. These “off diagonal” sections are most likely
to show energy coupling from one mode into another via the particle-motion direction

disturbance associated with singularities.

What should a singularity look like?

Figures 3.38 and 3.39 show model sections recorded over a homogeneous half-space of
the medium from Figure 3.29 (described in section 3.5.2). This time instead of showing
sections recorded along lines passing over the source at differing azimuths, a series of
sections recorded along parallel lines are shown. Instead of showing off-diagonal sections,
for all plots both the source and receiver are oriented along the y axis.

Figure 3.38 shows lines parallel to the z axis. (Since the source and receiver are oriented
along the y axis, these could be called “SH” lines.) Four different lines are shown. They

were selected to cut through different parts of the cone of singular directions. In terms of
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FIG. 3.37. Model sections for “cracked Greenhorn Shale” recorded along two different lines
of azimuth. The cracks run along azimuth 0° (the z-z plane). The source is a vertical
point force buried at a depth of 500 meters. The qP wave has been removed (leaving a
slight artifact near the top left of each plot). Only the “SH, 30°” plot shows any distinctive
orthorhombic effects.
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Figure 3.29 on page 104, the y = .25 plot completely misses the singularity to the right.
The y = 0. plot was recorded along the z axis and passes tangentially through one edge
of the cone of singular directions at z = 0, directly over the source. The y = .125 plot
passes through the center of the cone of singular directions, and the y = —.25 plot passes
tangentially through the left edge of the cone. The singularity mostly shows up in the
strange flatness of the top of the hyperbola, especially on the y = —.125 plot.

Figure 3.39 shows lines parallel to the y axis. (Since the source and receiver are oriented
along the y axis, these could be called “SV” lines.) In terms of Figure 3.29, the z = 0.
plot passes over the source and through the center of the cone of singular directions. The
z = .125 plot passes tangentially through the near edge of the cone of singular directions.
The z = .313 and = = .656 plots completely miss the singularity. Here the singularity
shows up in the strange breaks in the events as the qS1 and ¢S2 modes reassert their
separate identities after we move past the singularity, especially on the x = .313 plot.

Unfortunately from these examples it appears the direct effects of a singularity likely
to show up on standard SV and SH sections are not very clear cut. Stacking such mangled
events along hyperbolas is likely to produce something that looks like merely poor-quality

or noisy data, even as the corresponding qP events stack consistently and well.
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FIG. 3.38. Modeled z sections of the medium from Figure 3.30. The source is a Y point
force buried at a depth of 1 unit; the y component of particle-motion direction is shown.
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FIG. 3.39. Modeled y sections of the medium from Figure 3.30. The source is a Y point
force buried at a depth of 1 unit; the y component of particle-motion direction is shown.



