Chapter 1

Introduction

If Anisotropy is such a Big Deal, why has NMO worked as the basis for

time-to-depth conversions for 50 years? — F. Muir, 1985

A medium is anisotropic if its properties depend on direction. To a philosopher,
anisotropy is a fundamental property of a medium that says something deep about how it
is put together. This basic symmetry property of the medium can then cause observable

directional effects as a secondary phenomenon.

In this thesis I will consider only seismic anisotropy, meaning that sound waves prop-
agate differently depending on direction. Like the applied physicist who does not need a
grand unified theory of gravity in order to measure the mass of a beam, I will not be overly
concerned as to exactly how anisotropy happens. It could be due to regular patterns of
different kinds of atoms, irregular layers of sandstone and shale, or something else entirely.

If a medium looks anisotropic to the waves I send through it, I will say that that medium

is anisotropic.

Is the complex and impure Earth really an “anisotropic medium?”, or is it just a mess?
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1.1 Why anisotropy

Most geophysicists have always ignored anisotropy, and they have gotten away with doing
so for a long time. If anisotropy does commonly occur in the Earth, why have geophysicists

been able to ignore it so successfully?

1.1.1 Does anisotropy exist in the Earth?

The answer to this question is subtle and significant. Anisotropy has been observed, even

extremely strong anisotropy.

Historical observations of anisotropy

“Common knowledge” as far back as the 1930’s was that P-wave velocities determined
from refraction surveys were typically 10-20% higher than those determined from reflection
surveys in the same area. For example, Levin (1978) reports that an unpublished study by
McCollum and Snell in 1932 found horizontal P-wave velocities 40% faster than vertical
ones in the Lorraine shales in Canada.

Such observations of anisotropy in exploration Geophysics became more respectable in
the 1950’s following theoretical work by researchers such as Postma (1955), who pointed
out that even a completely isotropic layered Earth could appear anisotropic if the lay-
ering were on a finer scale than the wavelengths of seismic waves. (Rock outcrops show
this should often be the case.) Around this time reports of anisotropy also started ap-
pearing more often in the exploration literature. For one notable example, Jolly (1956)
reported finding horizontal SH waves traveling twice as fast as vertical ones in near-surface
sediments.

Meanwhile, evidence for “intrinsic” anisotropy came from laboratory studies of rock
samples. Nur (1969) found that anisotropy could be created in rocks by subjecting them
to the sorts of pressures found in the Earth. Bachman (1979) found transverse isotropy in
cores from the deep-sea drilling project. Jones and Wang (1981) found strong transverse

isotropy in cores from the Williston basin in North Dakota.

Why has NMO worked?

This still leaves the question of how anisotropy has been successfully ignored. The answer

lies in the sorts of reflection surveys that were typically done. Before the early 1980’s



only P-wave surveys with relatively narrow offsets were regularly recorded. Observations
show that at small offsets P-wave NMO! velocities are usually quite accurate, even in
the presence of strong anisotropy. (Le. the reflector depths calculated using the recorded
arrival times and best-fitting NMO velocities will be close to the actual depths found by
drilling. For a field data example showing the relative (in)accuracies of P and SH-wave
NMO and how they varied with lithology, see Winterstein (1986).) If this narrow-offset
P-wave insensitivity to anisotropy is generally true, then the traditional narrow-offset P-
wave recording methods and the standard isotropic imaging operations of P-wave NMO
and Stack will have usually worked, despite any anisotropy present (except for the wide-
angle near surface, which tends to get ignored anyway). Theoretical results show that such
narrow-offset P-wave insensitivity to anisotropy would result if the earth predominantly
consisted of thin isotropic layers all with about the same Vp/Vs velocity ratios (Helbig,
1984).

1.1.2 Is anisotropy worth trying to measure?

If P waves usually don’t exhibit noticeable anisotropic effects, then how about shear waves?

Shear waves

Until the 1980’s, when exploration Geophysicists recorded shear-wave data at all they
would typically record only an “SH” (Yy) section, and if they were ambitious perhaps an
“SV” (Xx) section as well. Such sections were usually of markedly poorer quality than
P-wave data recorded in the same location, giving S-wave exploration in general a poor
reputation. Starting in the mid-1980’s, however, more attention began to be directed
towards the theoretically predicted benefits of recording multi-component data, which
renewed interest in trying to record usable shear-wave data.

A particularly enlightening observation was presented by Alford (1986), who showed an
early multi-component survey that strikingly illustrated one reason why “SH” and “SV”

sections are often of such variable and low quality. His dataset suffered from significant

! Note for non-Geophysical readers: NMO stands for “Normal MoveOut”. The Encyclopedic Dictionary
of Exploration Geophysics (Sheriff, 1984) defines the term as: “The additional time required for energy
to travel from a source to a flat, reflecting bed and back to a geophone at some distance from the source
point compared with the time to return to a geophone at the source point.” Notice the implicit assumption
in this definition of an isotropic layer, a flat reflector at the bottom, and sources and receivers on a flat
surface at the top. If the variation of traveltime with distance fits this model the moveout is “normal”,
and the velocity of the isotropic layer is the “NMO velocity”.



azimuthal anisotropy. As a result, both split shear waves were present on each of the
standard “SH” and “SV” sections, and the two incoherent signals summed together to
make a confusing hash out of the reflectors. Using the cross-terms (SH source into SV
receiver (Yx) and SV source into SH receiver (Xy)) previously almost never recorded he was
able to perform a coordinate-system rotation to minimize the confusion between the two
split shear waves. The result was two new orthogonal shear-wave sections of dramatically
higher quality. Willis, Rethford and Bielanski (1986) showed that such scrambled shear-
wave effects were the rule rather than the exception at a variety of field locations in
Texas, New Mexico, and California, strong evidence that significant azimuthal anisotropy
is a commonplace phenomenon.

NMO velocities calculated from shear-wave data have also proven much less reliable
for time-to-depth conversion. Winterstein (1986) found that for a given geological layer
SH-wave stacking-velocity discrepancies tended to be much more variable with surface

location than the corresponding P-wave data.

The silver lining

However, he found that the shear-wave stacking-velocity errors were strongly correlated
with lithology: for shales he found that the SH-wave stacking velocity was significantly
greater than the true vertical velocity, while for sandstones the two were in agreement.
Similarly, other researchers have successfully used Alford’s shear-section rotation method
to estimate the extent and orientation of fractures in Austin Chalk (Mueller, 1990). The

variability of shear waves is a liability, but it is also an opportunity.

1.2 Understanding anisotropy

To make use of these new possibilities, Geophysicists will need to develop an intuition for
anisotropic propagation to extend and replace the basic intuition for isotropic propagation

we have already developed.

1.2.1 Previous work

Of course, anisotropy has been studied by many researchers over more than a century.
As early as 1837 McCullagh (1837) described the basic relationships between slowness

surfaces and wavefront shapes. More recently, the properties of elastic waves in general



anisotropic media have been described by authors such as Synge (1957), Helbig (1958),
Federov (1968), Musgrave (1970) and Auld (1973). While these fundamental references
do specify the mathematics of anisotropy completely, the great bulk of their analyses are
confined to symmetry planes.

This is because the analytical methods they use are (for the most part) only tractable
on the symmetry planes. Unfortunately, while symmetry planes are an understandable and
mathematically tractable case, they are also a misleadingly special case. Some important
anisotropic phenomena such as shear-wave singularities are inherently three-dimensional,
and must be studied as such (Crampin and Yedlin, 1981). While the precise shapes of
such complex three-dimensional features can be described mathematically, the analytical

solutions are usually too messy to allow any easy comprehension.

1.2.2 Goal of the thesis

My goal, then, is to attack the subject in a new way. Whenever possible, I will rely on
geometrical arguments in preference to mathematics. More importantly, I will verify my
results using model examples computed numerically from basic principles.

The numerical models themselves will be calculated using two fundamentally different
techniques. For the first method, I calculate theoretical impulse-response surfaces as the
polar reciprocals of slowness surfaces. The slowness surfaces are calculated by solving
the Christoffel equation (a classic eigenvalue-eigenvector problem) repeatedly for a large
number of plane-wave propagation directions. The second method is just brute-force
finite differences, which has the advantage of calculating the complete waveform (but is
correspondingly more expensive to use).

In the course of the thesis this same basic philosophy will be applied again and again to
several different problems in theoretical anisotropy. In the next section I briefly mention

the major topics covered.

1.3 Summary of the thesis

I begin in Chapter 2 by examining elliptical anisotropy. Several authors have previously
discussed elliptical anisotropy, such as Levin (1978), Helbig (1983), and Blair and Kor-
ringa (1987); I show how the properties of elliptical anisotropy these authors report are the

natural consequences of a simple linear relation between isotropy and elliptical anisotropy.



With a slight generalization, the linear transform idea can be extended to encompass
multiple layers with arbitrarily oriented elliptical anisotropy in each layer. The linear
transformation is always kinematically exact, and is even dynamically exact in the case of
pure SH waves propagating in a symmetry plane (Schoenberg and Costa, submitted).

Continuing Chapter 2, I present numerous examples bracketing the possible ranges of
behavior of transverse isotropy. In the process I present formulas that can be used to
predict the behavior of the impulse-response surface given the elastic constants. These re-
sults confirm the previous analytical work of Lyakhovitskiy (1984) and Helbig and Schoen-
berg (1987).

For a more applied transversely isotropic model example, I attempt to simulate a
laboratory core-sample measurement by Vernik and Nur (1990). Vernik had noted some
anomalies when performing the laboratory measurement; this computer model suggests
why the anomalies occurred, and how the design of the experiment might be improved.

I conclude Chapter 2 by examining how the divergence and curl operators’ wavetype-
separation properties can be generalized to the case of arbitrary two-dimensional anisotropy.
These anisotropic operators allow a vector wavefield to be collapsed onto two disjoint scalar
pure-mode fields. I have primarily used this method to isolate one wavetype from a finite-
difference model output; for example the qP wave can be extinguished before it hits the
edges of the model to allow a more detailed study of the ¢S wave for the same size model
grid. This method could also prove useful for two-dimensional vector-wavefield inversions,
although I have not yet used it for that purpose.

Chapter 3 begins by attempting to extend the two-dimensional wavetype-separation
algorithm to three dimensions. The three-dimensional algorithm works for qP waves, but
runs into fundamental trouble for other wavetypes. The difficulties encountered provide a
convenient platform for studying some of the peculiarities of three-dimensional anisotropic
wave propagation. Foremost among these are shear-wave singularities. This interesting
phenomena has been studied by several authors, notably Musgrave (1981) and Crampin
and Yedlin (1981). I use geometrical arguments to show why singularities must always
exist and to predict some of their properties. This investigation method in turn suggests
a new classification nomenclature for singularities based on their topological properties.

To conclude Chapter 3 I construct several model examples for studying the significance
of singularities. Topologically singularities prove to be slightly more complex than had

been previously indicated in the literature; there are two kinds of “lid” and both may occur



together. This is an esoteric point of unknown practical relevance to geophysicists, but
some of the other three-dimensional finite-difference model results might be geophysically
significant. In contradiction to the arguments of previous authors (for example (Garmany,
1989)), some of the effects of singularities prove to be of significant amplitude. In partic-
ular, one seemingly innocuous three-dimensional anisotropic effect called a “ring pinch”

can unexpectedly provide a nearly ideal vector for coupling a vertical source into an SH

receiver (a Zy section).

1.3.1 A sample application

The finite-difference modeling codes used in Chapters 2 and 3 prove useful for the study
of wave-propagation effects in anisotropic three-dimensional media. Their primary selling
point is that they are extremely accurate (Etgen and Dellinger, 1989) and model the com-
plete vector wavefield. Unfortunately they are also computationally expensive (although
they are quite cheap if the accuracy they deliver is taken into account). Often such com-
pleteness and accuracy is neither required nor wanted. For algorithms such as travel-time
inversion we want to know the arrival time of the wavelet, not its precise amplitude or
shape.

There are lots of methods already in use tailored for just such situations. One current
favorite is ray tracing. While ray methods are efficient and can handle arbitrary three-
dimensional inhomogeneities, they are quite tricky to code and debug and can become
inaccurate if rays pass through or near caustics, shadow zones, or singularities (Gajewski
and Pgentik, 1987). Reflectivity methods are also popular, but these methods are basically
limited to planar layered media and rapidly become expensive if the number of layers is
large (Booth and Crampin, 1983).

The numerous examples in Chapters 2 and 3 of impulse-response surfaces overlayed on
finite-difference wavefields suggest another alternative. The computationally inexpensive
impulse-response-surface program appears to predict the position of the finite-difference
wavefronts with great accuracy (see for example Figure 2.7 on page 32); why not use that?
Unfortunately, that program only handles homogeneous media.

In Chapter 4, however, I present an extremely inexpensive approximate method based
on the method of finite-difference traveltimes introduced by Van Trier and Symes (1991).
At its core this method extends the homogeneous techniques used to calculate impulse-

response surfaces in Chapters 2 and 3 to include heterogeneities.



