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ABSTRACT

Traditionally, theoretical elastic-wave anisotropy has been studied analytically. While
formal mathematical analysis can theoretically specify a wavefield exactly and completely,
this very completeness often means that the results are expressed as pages of equations.
These equations are often made more tractable by limiting the analysis to certain simple
cases such as propagation along planes of symmetry or in highly symmetric media. Re-
cent advances in computer power have made the study of theoretical anisotropy directly
through numerical exafnples practical for the first time. To this end I present a gallery of
examples of numerically calculated impulse-response surfaces and finite-difference wave-
field snapshots. These examples are used to demonstrate and expand upon some of the
theoretical properties of anisotropic elastic wave propagation predicted from geometri-
cal or mathematical arguments. This philosophy of attack is applied to several varieties
of anisotropy. Elliptical anisotropy can be completely modeled as linearly transformed
isotropy. To the extent elliptical anisotropy is applicable, images of the subsurface gener-
ated by standard geophysical methods are sharp but distorted versions of the true depth
picture. This is also true for the case of multiple dipping layers. For the case of two-
dimensional transversely isotropic media I present examples spanning the wide range of
wavefront behaviors possible in this symmetry system. I also present inequalities that can
categorize the behavior from the elastic constants. Two-dimensional transversely isotropic
equivalents of the isotropic wavetype-separation operators divergence and curl are derived
and applied to finite-difference wavefields. The two-dimensional anisotropic operators
work well although they are not as compact as the corresponding isotropic ones. The nu-
merical examples show that mathematically tractable two-dimensional or symmetric cases
are not representative of general three-dimensional anisotropy, however. In three dimen-
sions wavetype-separation operators do not work for separating the two qS modes because

of the obligatory presence of shear singularities tying the ¢S modes together. When a
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transversely isotropic three-dimensional medium is perturbed to become orthorhombic a
new event dubbed a “connection” can appear. This event acts to channel energy between
the former qSV and SH modes outside of the symmetry planes, resulting in seismograms

quite different in appearance from the unperturbed case.
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