Chapter 5

Velocity estimation

5.1 INTRODUCTION

So far, I have discussed only the forward problem: how events are migrated after they have
been identified in the structural interpretation. The migration images separate subsets of
the data, the constant-offset sections. Although each constant-offset section represents
a different collection of seismic experiments, they all sample the same subsurface area.
Therefore, barring discrepancies due to limited coverage, noise problems, shadow zones,
AVO effects, etc., the migrated constant-offset sections, which are images of the subsurface,
should be identical to each other. In reality they hardly ever are, because the velocity model
needed in the migration of the sections is unknown; the migrated sections are therefore
incorrect.

The above observation serves as the basis for the inverse problem: how to find the
correct velocity model to use in migrating the events. The inversion is formulated as
an iterative optimization process, in which success in the optimization is measured by a
function that quantifies discrepancies between migrated events in different constant-offset
sections. This objective function is calculated after events have been converted to the
zero-offset-time domain, where residual moveout is better determined than in the depth
domain. These converted events are equivalent to events in NMO+DMO-corrected data,
provided that the DMO operator properly handles lateral velocity variations.

In finding the correct velocity model, the optimization method uses the derivatives
of the objective function with respect to the model parameters. These derivatives form a
linear operator that describes how perturbations in the velocity model change the positions

of migrated reflectors. As in standard traveltime tomography, the calculation of this
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linear operator involves the computing of derivatives of traveltime with respect to the
model parameters. However, as discussed in Chapter 1, there are some differences between
traveltime tomography and the velocity-estimation method presented here. An important
difference is that I incorporate in the linear operator reflector movement as a function
of velocity. This requires additional gradient calculations, some of which I have already
discussed in Chapter 4.

I start this chapter by describing how I parametrize the velocity model. I then discuss
the objective function, after which I examine in detail the calculation of its gradient. Next,
I present the optimization scheme itself. Finally, I discuss geological constraints and the

problem of finding a structural-velocity model.

5.2 MODEL PARAMETRIZATION

It is well-known that velocity determination by moveout or traveltime analysis gives only
the low-wavenumber component of the velocity field (Claerbout, 1985, Fig.1.4-3). When
a ray travels through several structures in the Earth, its traveltime is an integral measure
of the velocities in the structures that the ray encounters. Unraveling the exact velocity
of a structure from traveltime observations is therefore possible only when the structure is
penetrated by a large number of rays over a wide range of angles. In reflection seismology,
where most of the rays travel nearly vertically, such a situation is highly unlikely.

In view of this limitation, I choose to parametrize the velocity model by two-dimensional
cubic spline functions that are intrinsically smooth. Also, spline functions can be described
by few parameters, so that the inverse problem is well determined. The actual variable
determined in the optimization is slowness, the reciprocal of velocity, because the inverse
problem is more easily linearized for slowness than it is for velocity. Thus, the 2-D slowness

model s is described as
8(z,2) = Z E cij fi(z) 95(2), (5.1)
i

with f; and g; the spline functions at the sth spline cell in the z-direction and the jth
spline cell in the z-direction, respectively. c¢;; are the spline coefficients that form the
model parameter vector m. I use a method described by Inoue (1986) in the calculation

of spline coeffients for a two-dimensional function.
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The initial velocity model is determined from NMO-velocity analysis, geological in-
formation, well logs, or any other source of a priori information. Note that some of this
information, in particular knowledge coming from well logs, may justify specifying velocity
contrasts that cannot be described by smooth spline functions. I will come back to this

issue later (section 5.6); for now I assume that no such information is available.

5.2.1 Parametrizing horizons?

Many tomographic methods try to invert for an additional variable apart from velocity:
the depth of interfaces in the velocity model (Bishop et al., 1985; Stork and Clayton, 1987).
I choose not to parametrize both velocity and depth in the optimization. Instead, I obtain
the reflector depths from the migrated data, and use them only in the computation of the
backprojection operator. Of course, if the migration velocity model is incorrect, the depths
of the reflectors will be wrong, which is why many tomographic inversions parametrize
reflector depths in the first place: to correct for errors made in the gradient calculation by
assuming a fixed, wrong reflector position. However, by taking the velocity dependency of
the reflector positions into account in the gradient calculation, I do not make this type of
error, and I do not have to include the horizon locations in the inversion.

Avoiding the use of reflector depth as a model parameter in the optimization has
some advantages. First, as I discussed above, specifying horizons and velocity contrasts
without any information other than seismic traveltimes may be unwarranted. Second,
both velocity and depth of a structure control the position of a reflector after migration.
This velocity-depth ambiguity can lead to instabilities and nonconvergence of the solution
in the optimization (Stork, 1988). Finally, velocity and depth are two different physical
parameters that need to be scaled differently in the optimization. The scaling factors are

hard to determine in advance.

5.3 OBJECTIVE FUNCTION

If the migration-velocity model is not correct, the same reflector will appear at different
depth positions for different constant-offset sections (Figures 2.5 and 2.7). In principle, one
wants to determine differences between the true and migrated depths of the reflector at
each offset and surface location, and translate these depth perturbations into velocity per-

turbations in the inversion method. At each surface location z,, these depth perturbations
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52z, describe a residual-moveout curve as a function of offset:
62, (zp, hym) = 2ipye(z,y) — z(2r, h;m), (5.2)

where 2zi;ye is the true reflector depth as a function of surface location, and 2, the migrated
reflector depth as a function of surface location, offset, and migration velocity. Unfortu-
nately, the true position of the reflector is not known, and depth perturbations cannot be

accurately determined.

5.3.1 Pseudo-depth perturbations after NMO and DMO

A solution to this problem is to model zero-offset events for the migrated reflectors in
each constant-offset section. Modeling is done with the operator M of section 4.3 (equa-
tion (4.10)):

do(yr, h; m) = M(y,,h = 0; m)(r(yr, h; m)). (5.3)

dg are the modeled zero-offset events in the constant-offset sections, and y, the midpoints
of the modeled events (as before, the subscript r denotes that y corresponds to a specific
point on the reflector). dg depends on offset through the offset dependency of the migrated
horizons r. Note that the horizons also depend on velocity: they are found after migration
with the velocity model m. I will come back to this in the next section.

In short notation, equation (5.3) is written as
do(m) = Mom(r(m)), (5-4)

where Mo m is the zero-offset modeling operator. Thus, a depth point r on a reflector in
a constant-offset section has two corresponding points in two other domains: a data point
d in the unmigrated time domain, and a pseudo-depth point dg in the pseudo-depth or
zero-offset-time domain. Throughout the rest of this chapter, I will regularly refer to these
points, which I assume to be known for each depth point considered in the optimization.

Because the modeled events in the zero-offset section correspond to true zero-offset
events (as long as the same velocity is used in migration and modeling), they can be
used as a reference for modeled events in other sections. The reflector perturbations are

thus better determined in zero-offset time than they are in depth. Another advantage of
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converting events to pseudo-depth is that the reference events in the zero-offset section

do not move as velocity changes; thus the gradient calculation concentrates on the offset

behavior of the events, the part that provides the most velocity information.
Perturbations in zero-offset time 7 of the events are now determined at common-

midpoint locations y,:
5Tr(yr, h;m) = Ttrue(yr) - Tr(yr, h;m), (5'5)

with 7,(yr, h;m) the time of modeled zero-offset events dg, and 7irue(yr) = 7r(yr, b = 0)
the true zero-offset time of an event. Note that I ignore the stepout component of dg
(recall equation (2.4): d = (¢,p,)); I am only interested in perturbations in pseudo-depth,
the time component of dg.

The result of this cascaded process (migration and zero-offset modeling) is exactly
the same as the one that would be obtained from interpreting the events in constant-
offset sections after NMO and DMO has been applied to the data (Bolondi et al., 1982;
Deregowski, 1986). Of éourse, like the modeling operator M, the DMO operator has to be
able to handle velocity variations in both the depth and lateral directions. Popovici and
Biondi (1989) define such a general DMO operator as the same cascade of depth migration

and zero-offset modeling.

5.3.2 Minimizing the objective function by least squares

The goal of the optimization is to minimize perturbations in moveout along offset. A
common choice for the objective function J to be minimized is the Euclidean or L norm

of the perturbations,

Ttrue(yr) - Tr(yr;h;m)lz' (5'6)

J(m) = Z,6rr(yr,h;m)|2=2

Yr rh Yr 1h

The problem of finding a solution that minimizes this Lj-objective function is called
the least-squares problem, and its solution is named the least-squares solution. Although
least-squares methods are widely applied, some different approaches to the inverse problem
have been proposed. Claerbout and Muir (1973) advocate the use of the L; norm, which
leads to methods of linear programming. Linear programming methods are, however, not

efficient enough for application in large-scale inversions. From here on, I therefore limit
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myself to the Ly norm.

A first step towards finding the least-squares solution is to linearize the modeled events
with respect to the model parameters. Assuming small model perturbations ém, the
objective function can be evaluated for a perturbed model m + ém if the problem is

linearized around the current solution m:

2
J(m+5m) = Z Ttrue(yr) - Tr(yr,h;m-i-&m)l
vf)h
or. 2
= 3 |rruelyr) = 7olyrshsm) — 2= (r, hym)ém| (5.7)
ve,h m
2
= "6r - G5m|| .

7 is a vector consisting of the pseudo-depth perturbations §7,(y,, h;m), r = 1, N, with N
the number of reflector points. || - || denotes the vector norm. G is a N X M matrix, with
M the number of model parameters. The elements of G are the first-order derivatives of

pseudo-depth with respect to the model parameters m,:

ar,

re —
om,’

r=1,N; c=1,M. (5.8)

(A row of the matrix is calculated for each reflector point, hence the index r. To be
consistent, the index for each column is denoted by ¢.) The gradient operator G is called
backprojection operator because it projects perturbations in pseudo-depth back onto the
model.

To find the least-squares solution §m that minimizes J, I solve 8J/3m = 0, which

yields the normal equations

GTGém = GTsr. (5.9)

Damped least squares

In practice, the above system is often underdetermined, and the least-squares problem

usually must be damped to yield a meaningful solution. This damping can be done by
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computing the least-squares solution of a modified system of equations

G or
() om = (%). 610

where D is a damping matrix. The least-squares solution of this system minimizes
2 2
HST - G&m” + ”D5m|| (5.11)

(see Tarantola, 1984). D adds a penalty term to the objective function, and can thus
be used to constrain the model according to a priori knowledge. D is often called the

model-covariance matrix.

5.4 BACKPROJECTION OPERATOR

As I noted before, pseudo-depth modeling depends on the velocity model through the
modeling operator Mom, and on the position of the reflector point r (equation (5.4)),
which itself is a function of velocity. To find the correct backprojection operator, the

gré.dient calculation must honor the velocity dependence of the depth point:

IMo
or

o
ém’

(r/m)

ddg _ IMo

om _ om (5.12)

+
(r;m)

or, when the equation is written out for pseudo-depth, the time of the modeled zero-offset

event,

ar, Oy
dm  dm

oz,

(r.m) om

ory

oz

Oz, | Omv

m | oz
(rm)

. (5.13)

(r/m)

In the above equation I have replaced the modeling operator Mg m in equation (5.12) by
7, = 7v(2,, 2z,;m) (equation (4.9), where I again ignore the stepout component of dgp).
Thus, the backprojection operator consists not only of derivatives of pseudo-depth with
respect to the model parameters for a fixed reflector position (the first term in the right-
hand side of the above equation), but it also has two terms that describe the changes in
pseudo-depth due to reflector movement, which in turn is caused by changes in velocity.

This is an important difference with traditional tomography, in which reflector positions
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normally are assumed to be fixed. The inclusion of reflector movement in the gradient
calculations is crucial in reflection tomography; without it, the backprojection operator
would be less accurate.

Equation (5.13) gives one row (for one depth point) of the backprojection operator

G, = A, +B,M,, (5.14)
with
dz,
dm
A =2 B = (%— "g—) M, = , (5.15)
dm (r.m) x z dz,
om

which requires the calculation of three different submatrices A,,B,, and M,. Matrix A,
describes how pseudo-depth varies as a function of the model parameters at fixed reflector
position. Matrices B, and M, represent the effects of reflector movement: M, is the linear
residual-event-migration operator discussed in section 4.7; it relates changes in the model
parameters to changes in reflector position. The latter changes are then translated by B,
into changes in pseudo-depth.

Note that the elements of G are zero for the zero-offset section: at zero offset, the
elements of matrix A are canceled by the elements of BM. In other words, pseudo-depths
in the zero-offset section corresponds to true zero-offset times in the data, and are not

affected by changes in the model.

5.4.1 Computing the backprojection operator

The calculation of the full backprojection operator G requires, in addition to the calcula-
tion of matrix M (which I discussed in section 4.7), the computation of matrices A and
B. However, these matrices consist of the same type of derivatives as the ones needed in
the computation of M. The only difference is that the derivatives for A and B describe
changes in the pseudo-depth point dg, instead of changes in the data point d. Further-
more, these matrices contain only derivatives of zero-offset time; no stepout derivatives are
needed. Thus, a row of the matrix B, consisting of dr,/8z and 9r,/9z, and a row of ma-

trix A, consisting of d7,/dm, are calculated as discussed in Appendix A, in which source
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and geophone position are identical and given by the midpoint position of the modeled
pseudo-depth point dg.
To summarize, for each depth point, the calculation of G involves the following steps:

1. Calculate derivatives of dg with respect to model parameters; this gives a row

of the matrix A.

2. Calculate derivatives of dg with respect to reflector movement; this gives a row

of the matrix B.

3. Repeat step 1 and 2, but now for d, and construct M,, a submatrix of M.

This involves taking the inverse of a 2 X 2 matrix (equation (4.21)).

4. Compute a row of G with: G, = A, + B, M,.

The above procedure is repeated for every depth point on all the reflectors in every

constant-offset section; this gives the full matrix G.

5.4.2 Verifying the backprojection operator

To, verify the backprojection operator, I use it to predict perturbations in 7,. I first model
constant-offset reflection events for a dipping reflector with a velocity model m, and then
I migrate them with an incorrect model m + ém. Next, I calculate the gradient operator
G for these wrongly migrated events, and, by calculating Gém, I predict perturbations in
pseudo-depth. I then compare these forward-predicted perturbations to the true ones.

The unperturbed model is a constant-velocity model with a velocity of 2 km/s; the
perturbed one has a velocity that is 10% too low (1.8 km/s). Figure 5.1a shows the
dipping reflector in migrated constant-offset sections after migration with the incorrect
model. As can be seen in the figure, the reflector is imaged incorrectly: it is curved, and
its position changes with offset. Figure 5.1b shows the migrated constant-offset reflectors
converted to pseudo-depth by zero-offset modeling. The modeled event in the zero-offset
section corresponds to the true zero-offset event (time 7iy,e), which serves as a reference
for the events in the other constant-offset sections (time 7,). The resulting pseudo-depth
perturbations §7 = ryye — 7 are displayed for two midpoints in Figure 5.2 (solid lines).
I now calculate the backprojection operator for all depth points in the different constant-
offset sections, and then apply it to the model perturbations ém to predict perturbations
67 = Gém (dashed lines in Figure 5.2).
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FIG. 5.1. Dipping reflector (true dip 30°) migrated with an incorrect velocity model
(velocity 1.8 km/s; the true velocity is 2 km/s). Figure (a) shows the true reflector
(dashed line) and the incorrectly migrated reflector in different constant-offset sections,
with offsets ranging from 0 to 1.8 km (solid lines). The zero-offset reflector is shown by

a fat line. Figure (b) shows the migrated constant-offset sections in pseudo-depth, after
zero-offset modeling. The fat line denotes the zero-offset reflector in pseudo-depth, which
is identical to the true zero-offset reflection event (dashed line).
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FIG. 5.2. Pseudo-depth perturbations for the dipping reflector of Figure 5.1 at midpoints
(a) 1 km and (b) 2 km (solid lines). The dashed lines show the forward-predicted pertur-
bations Gém, where G is calculated for a 16x 16 spline model.

These predicted perturbations closely resemble the true ones, even though the backpro-
jeetion operator is calculated for mispositioned reflector points. Furthermore, the reflector
positions need not be guessed or estimated: they follow naturally from the migration
results. These two aspects are significant advantages over traditional traveltime tomogra-
phy; there the backprojection operator is often incorrectly calculated for wrong reflector

positions, which are either guessed or estimated together with velocity.

5.5 OPTIMIZATION SCHEME

The backprojection operator described above is used in an optimization scheme that it-
eratively updates the velocity model until the pseudo-depth perturbations are minimized.
The algorithm consists of several loops and is displayed in Figure 5.3.

The input to the inversion is a set of reflectors in the migrated constant-offset sections,
an initial velocity model m (the same velocity model that was used for migrating the
data), and a damping matrix D (see section 5.6). Before the optimization is started, the
unmigrated events d are reconstructed with equation (4.11) for each depth point r on the
reflectors. These modeled events are used throughout the inversion to residually migrate

the reflectors. Furthermore, this modeling gives the source and geophone positions of
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Input:
1. Migrated reflectors in constant-offset sections r.
2. Initial migration-velocity model m.
3. Geological constraints: damping matrix D.

For each surface location S {
Calculate and store finite-difference traveltime map.
}

For each depth point r {
Model data point: d = Mm(r).
}

Nonlinear outer loop: do {
For each depth point r {
Model pseudo-depth point: dg = Mom(r).
Determine pseudo-depth perturbation é7,.
Calculate row of gradient operator G,.

}

‘Linear inner loop: do {
Invert for §m: ém = (GTG + DTD)1GTésr.
Update model: m = m + ém.

} until converge in m.

For each surface location S {
Calculate and store finite-difference traveltime map.
}
For each depth point r {
Update reflector position: r = M;l(d).
} until converge in r.
Output:

1. Updated reflectors r.
2. Updated velocity model m.

FIG. 5.3. Optimization algorithm.
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the data point belonging to each depth point, information that is needed in the gradient
calculation. The modeling uses finite-difference traveltime maps calculated at regularly
spaced surface locations. These maps are stored and used during the optimization by the
various migration and modeling operators.

The algorithm consists of two major loops: a linear inner loop and a nonlinear outer
one. In the inner loop, model perturbations are determined by an inversion of the linear
gradient operator. The perturbations in the model are found by solving the damped system

of equations (5.10) by least squares:
T ) ‘el
sm = (GTG + D'D) G7ér, (5.16)

The inverse matrix in the above equation is not explicitly calculated; instead, a conjugate-
gradient method is used to find the least-squares solution. I use the conjugate-gradient
routine LSQR of Paige and Saunders (1982). New traveltime maps are computed for the
updated velocity model in the outer loop of the algorithm, after which reflector positions
are adjusted with the nonlinear residual-migration operator (equation (4.15)). The up-
dated reflectors are used in the recalculation of the pseudo-depth perturbations ér and the
gradient operator G. The inner and outer loops are run until the solution converges in m

or r, respectively.

5.6 STRUCTURAL VELOCITIES

As I discussed in section 5.2, only the low-wavenumber component of the velocity model
can be determined from event moveout. However, a smooth velocity model may limit
the interpretation of the migrated data: an interpreter may prefer a structural-velocity
model that can be related to geological features in the seismic image. In regions with salt
structures, in particular, finding a structural model and locating salt boundaries can be
important for oil exploration (Larner, 1987).

Given that moveout analysis can determine only smooth velocity models, information
about structural velocities has to come from other sources. If available, well logs probably
provide the most important source of information. In most cases well logs allow the deter-
mination of reflector depths and velocities of major structures. Furthermore, they reveal
the lithology of sediments in the region, knowledge that also proves useful in interpreting

seismic data away from the well.
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If no well logs are available, the seismic image itself provides a good start in deriving
a structural model. Although structural boundaries may be mispositioned, the image is
generally focused enough so that major structures can be identified. For example, salt
structures are normally easy to recognize on the migrated image, and the velocity of salt
formations in certain sedimentary basins is often known. The seismic data may also show
different wave types that can further constrain the velocity model. The latter constraint
is illustrated in the field-data example of the next chapter.

Finally, general geological knowledge can help shape the structural model. Exam-
ples are constraints on fault dips, section balancing, basin reconstruction, etc. Although
promising, the quantitative specification of these constraints is still in its infancy. That
is, most of the techniques employed in this field determine structural models by trial-and-
error: they forward model the deformation of an assumed structural model in geological
time, rather than invert this structural model from the current geology. The treatment
of these methods is beyond the scope of this thesis; I refer the reader to the work of

Suppe (1983; 1985).

5.6.1 Constraining the optimization

=i

The input of these constraints into the optimization is more of an art than a science.
Although a priori knowledge about the structural model can theoretically be entered in
the damping or model-covariance matrix D (Tarantola, 1984), the exact choice of damping
parameters is often elusive. In practice, the only damping matrices that are well-defined
either constrain individual velocities or their derivatives (Toldi, 1985; Sword, 1987). This
limitation is not very satisfactory when there is complex geology, for which one wants
to specify constraints on both structure and velocity. My solution to this problem is to
combine the optimization with an interactive analysis of the data and the velocity model.
In other words, as long as the quality and acquisition of the geophysical data leave the
velocity-inversion problem underdetermined, and given that geological constraints cannot
be easily quantified, it is better to trust a trained interpreter than a poorly understood
damping matrix.

The interactive analysis consists mostly of specifying a valid input model. Although
the velocity analysis determines smooth velocity perturbations, the interpreter may specify
a structural input model based on an initial inversion with a smooth velocity model. (An

example of this analysis is given in the next chapter.)
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5.7 SUMMARY

The velocity analysis is formulated as an iterative optimization process, in which the
objective is to minimize discrepancies between migrated events in the different constant-
offset sections. The optimization algorithm consists of two loops: a linear inner loop and
a nonlinear outer one. In the inner loop, model perturbations are determined from the
minimization of the objective function by a conjugate-gradient algorithm. In the outer
loop, reflector positions are updated with the nonlinear residual-migration operator of
section 4.5.

The gradient operator incorporates reflector movement and ray-bending effects through
the linear residual-event-migration operator discussed in the previous chapter. The inclu-
sion of these effects is an important advantage over traveltime tomography, which nor-
mally assumes fixed reflectors and rays. Furthermore, the gradient computation does not
require an elaborate ray-tracing scheme, the traditional method for calculating deriva-
tive operators in tomography. These two advantages make the velocity estimation robust
and well-suited for structurally-complex areas, where errors in structural velocities and

reflector positions may be large.
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