Appendix E

Derivation of the back-projection operator

In section 3.2.2 I formally derived the equation for evaluating the back-projection operator
that relates perturbation in the velocity model to perturbations in the beam stacks’ offsets.
In this appendix I derive the same equation as in the main text [equation (3.11)], but the
derivation presented here explicitly shows the relation between the perturbation in beam
stacks offset and the movement of reflectors.

For each offset ray parameter p, and each midpoint ray parameter p,, the back-
projection operator is given by the partial derivatives of the offset h with respect to the
velocity model m, evaluated at constant transformed traveltime 7 and constant midpoint
y. The reflector’s position (z, z) must move, so that the transformed traveltime and mid-
point remain constant when the velocity is perturbed. These reflector’s movements must
be taken into account for the offset perturbations to be correctly computed. The desired

derivative is evaluated by use of the following formula [equation (3.11) in section 3.2.2],
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which combines the partial derivatives dh/d7 and 3h/dy computed at constant velocity
model on the manifold h(r,y) defined by ray tracing, with the partial derivatives §h/ém,
67/6m, and §y/6m computed at constant reflector position (z,z). The raypaths deriva-
tives are computed by use of the gradient computations presented in Appendix C.

The modeling by ray tracing establishes a map between the reflector space (z, z) and the
data space (7,y, h). This map is function of the velocity model m and can be represented
by the triplet of functions [r(m, z, z), y(m, z, 2}, h(m, z, 2)]. Differentiating these functions

with respect to the model perturbations dm and with respect to the reflector movements
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(dz, dz), we get the following relations:
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Given a model perturbation dm , the reflector’s movement (dz, dz) is determined by the

conditions that the transformed travel time 7 and the midpoint y be constant. Therefore,

imposing dr = 0 and dy = 0 in equation (E.2) and (E.3), and solving for (dz,dz) gives
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Substituting these values of (dz,dz) into equation (E.4), and regrouping the terms, we

find
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This equation express the perturbations in offset caused by perturbations in the velocity
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model, at constant transformed traveltime and midpoint. The partial derivatives computed
at fixed reflector position are multiplied by terms that are evaluated at constant velocity
model, and therefore can be computed from the results of ray tracing. These terms can
be actually related to the partial derivatives computed on the manifold h(7,y). From

equation (E.2) and (E.4), assuming dm = 0, we derive,
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Therefore the partial derivative dh/97 is equal to the term that multiplies §7/6m in
equation (E.7).

Similarly, from equations (E.3) and (E.4), assuming dm = 0, we derive,
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Finally substituting equations (E.10) and (E.13) into equation (E.7) we get the desired

result,
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