Chapter 3

Interval velocity estimation

3.1 OVERVIEW

In the last chapter I formulated the velocity estimation problem as the maximization of
beam stacks’ semblance at the traveltimes and surface locations predicted by the velocity
model. In this chapter I present an optimization procedure for solving the estimation
problem. This procedure employs a conjugate-gradient and a Gauss-Newton algorithm.
These algorithms, as all optimization algorithms based on the derivatives of the objective
function with respect to the model parameters, require the evaluation of a linear operator
that relates velocity perturbations to the consequent perturbations in the modeled data.
The adjoint of this linear operator is the back-projection operator of the tomographic
estimation, and it is applied to evaluate the gradient of the objective function with respect
to the model.

The velocity estimation presented in this chapter was successfully tested with synthetic
data modeled with use of a finite-difference program. In this test a velocity anomaly was

estimated from the reflections off a dipping bed.

3.2 THE TOMOGRAPHIC BACK-PROJECTION OPERATOR

The optimization problem of maximizing beam stacks’ semblance can be solved with an
iterative procedure. At each step of the procedure the velocity model is moved along a
direction that causes an increase of the objective function. Directions of increase can be
computed by an evaluation of the derivatives of the objective function with respect to the
model. The computation of these derivatives requires the evaluation of a linear operator

G that relates model perturbations to the consequent perturbations in the modeled data.
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The modeling functions can be linearized at a fixed reflector position or, at a fixed
offset and midpoint, or at a fixed event in the data. The linear operator that I use
for the velocity estimation relates the perturbations in the beam stacks’ kinematics to
perturbations in velocity, at a fixed event in the data. Fitting the data at a fixed event is
the most appropriate procedure for seismic data, which contain a discrete set of events.

A velocity perturbation causes movements in the reflectors correspondent to the events
in the data. The derivation of the linear operator G must take into account the move-
ments of the reflectors and thus it must consider the perturbations in the raypaths caused
by velocity perturbations. The derivatives of the raypaths with respect to velocity are

computed by use of the ray-tracing method presented in Appendix C.

3.2.1 The objective function and its gradient

The goal of the velocity-estimation procedure is to maximize the beam stacks’ semblance
at the traveltimes and surface location predicted by ray tracing. In equation (2.21) I

defined the following objective function for this maximization problem

Qt(m) = ZZZZBea’m (t(y,h,Py,Ph,m);y,h,Py»Ph) -

¥ h Py Pnr

(m — mg)? Cyy ™} (m — my). (3.1)

The beam stacks’ semblance is significantly different from zero only in the proximity of
its peaks, which correspond to events in the data. In particular, semblance is different
from zero only at a few modeled data-points (t(y, h,py, pr,m),y, h,py,pr); these points
correspond to the detected events for the velocity model m. Only these detected events
contribute to the value of the objective function and to the evaluation of its gradient.

Therefore the objective function can be conveniently rewritten as,
Qi(m) = 3" B (t:(m)) ~ (m — mo)” Can ™ (m — mo), (3.2)
i

where 1 is the index of the set I of the modeled data-points (¢;(m),y,h,py,pr) that
correspond to detected events in the data. The composite functions B; (t;(m)) are made
of the fitting functions B;(¢;), which have higher values the closer ¢; is to the times of the

respective semblance peaks, and the modeling functions ¢;(m), which depend on the result
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of modeling by ray tracing.

To compute the gradient of the objective function with respect to the velocity model I

apply the chain rule to the composite functions B; (t;(1n)) and obtain the expression

6 B,' (t,' (m))

vQ; = Z ~—om 2Cm " H(m — myp) =
3 ek S 20 m —mo) =
GI D; - 2Cpy~(m — my), (3.3)

where the partial derivatives are computed at fixed values of y, h,p,, and ps.

The vector Dy is easily computed from beam-stacked data with a finite-difference ap-
proximation of the first-derivative operator. The components of the vector D; are pro-
portional to the distances between the modeled traveltimes ¢; and the traveltimes of the
semblance peaks. They are thus equivalent to the residuals in a least-squares minimiza-
tion. The matrix of the Frechet derivatives Gy is a linearization of the modeling functions
and relates the perturbation Am in the velocity model to the consequent perturbation
At; in traveltimes; that is, At; = G;Am. The gradient is computed by the application of
the transpose G7 to the vector of the derivatives D;. The matrix G/ is a back-projection

operator because it back projects the residuals D; into the velocity model.

The computation of the gradient by use of equation (3.3) implies a fitting of the mod-
eled traveltimes to the data traveltimes, at constant offset, midpoint and ray parameters.
This formulation for the gradient is the most straightforward, given the modeling algo-
rithm that I presented in section 2.3.1, but it is not the only one possible, and actually
it is not the best one. The major problem with fitting traveltimes is that varying the
traveltime at constant offset and midpoint implies a change of the event in the data.
Therefore a perturbation in the velocity model causes the perturbed modeled data-point
(t; + GeAm,y, h,py,pn) to correspond to an event in the data different from the event
correspondent to the unperturbed data-point (¢;,y, h,py, pr). This effect can cause insta-
bility in the maximization procedure when the events in the data, that is the semblance
peaks in the beam-stacked data, are sparse. In such a case, there are many modeled data-
points ¢;(m) that are unconstrained and thus the maximization algorithm can force these

unconstrained modeled data-points to concentrate around the same semblance peak. The
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undesired result of this concentration is to explain one event with many modeled data-
points, whereas, the desired correspondence is a one-to-one. This problem can be solved
by a change in the linearization of the modeling function used for computing the gradient.
Instead of keeping fixed the midpoints and offsets of the modeled data-points, the events
in the data are kept fixed. The new linearization preserves the desired one-to-one cor-
respondence between modeled data-points and events in the beam-stacked data, because
a velocity-model perturbation causes the modeled data-points to follow the events in the

data.

The new gradient computation is easily accomplished after a transformation of the
traveltime axis; this transformation is applied to the beam-stacked data and to the result
of modeling. In a beam stack with offset ray parameter py, the events are, by definition,
parallel to the line of the equation ¢t = pph. To follow an event, the modeled data-points
must move along dipping lines, with time dip equal to p,. These dipping lines are lines at
a constant transformed traveltime r when the time axis is transformed accordingly to the

relation
r=1t— pph. (3.4)

The events in the transformed data can be fitted with variations in the offset h at constant

transformed traveltime r. The beam-stacked data are transformed according to the relation

Beam(r,y, h,py,pr) = Beam (r + prh,y,h,py,p1) , (3.5)

and the modeling by ray tracing can be conveniently represented by the function

h= h(T:y’py)ph;m)- (36)

Figure 3.1 shows the semblance panels computed by beam stacking the CMP gather
shown in Figure 2.1 before (left) and after (right) the data have been transformed ac-
cording to the the coordinate transformation of equation (3.4). The events in the data
have constant traveltime after the transformation. The two curves superimposed onto the
beam stacks have been computed by ray tracing through the same velocity model, but
for obtaining the curve on the right, the result of ray tracing has been transformed with

equation (3.4).
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FIG. 3.1. Semblance panels computed by beam stacking the CMP gather shown in Fig-
ure 2.1 before (left) and after (right) the coordinate transformation of equation (3.4). The
events in the data have constant traveltime after the transformation. Superimposed onto
the beam stack are the traveltime-offset curves resulting from ray tracing.

In this new coordinate system the objective function in equation (3.1) becomes

Qnr(m

= Z ZZ Z Bea'm (T’ y,h(r, y:py:pham)apy,ph) -

T Y Py Pr

(m — mp)T Cpy "} (m — my). (3.7

When only the detected events I are considered, this new objective function can be rewrit-

ten as

Qr(m) = ZB; (hi(m)) — (m — mp)TCpy ™ (m — myp). (3.8)
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The gradient of this new objective function can be calculated as is the gradient in

equation (3.3), by use of the following equation

vQ, = Z dB; (hi(m)) 2Cm~(m — mo) =

; Om
oh; 0B; -
> a7, — 2Cm ™ (m —mo) =
i ¢
GZ‘ Dh - 2Cm‘1(m - mo), (3.9)

where the partial derivatives are now computed at fixed values of 7,y,p,, and pj.

As in the previous formulation the vector Dy, is equivalent to the vector of residuals
and the matrix G’;'; is the back-projection operator. The problem of evaluating this back-
projection operator will be addressed in the next section.

The objective function Q:(m) expressed in equation (3.2) and the objective function
Qn(m) expressed in equation (3.8) are clearly equivalent, but the two gradients VQ, and
V@), are different because the detected events are a discrete mesh in the data space. There
would be no difference between the two gradients if continuous integrals were substituted
for the discrete summations in the expressions of the gradients. The application of the
gradient of equation (3.9) yield a more robust estimation process than the application of
the gradient of equation (3.3) because of the discrete nature of seismic events.

An additional advantage of using the objective function of equation (3.8) instead of
equation (3.2) is that beam-stacks’ offset are more sensitive to velocity perturbations than
are beam stacks’ traveltimes, as I discussed in section 2.4. Therefore the inversion of the
linear operator Gj, is more robust of the inversion of G;. Noise in the measurements of
the semblance derivative vector D} will have less effect on the search direction than noise

does in the measurements of Dy.

3.2.2 Computation of the back-projection operator

To compute the gradient of the objective function with respect to the velocity model, the
vector of semblance derivatives Dy, is back projected into the model space by use of the
linear operator G;";. In this section I derive the basic formula for computing the matrix of
the Frechet derivatives G,.

The matrix Gj, is the linearization of the modeling function h(r,y,p,, pr,m) at fixed
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events in the data. More precisely, it relates velocity perturbations to perturbations in
beam stacks’ offsets, at constant transformed traveltimes and midpoints. A perturbation
in the velocity model causes perturbations in the raypaths and consequently it causes
movements of the reflectors correspondent to the events in the data. Because of these
reflectors’ movements, the raypaths’ perturbations must be taken into account when the
derivatives of offset at fixed events are being calculated. The need for considering the
perturbations in the raypaths distinguishes the beam-stack back-projection operator from
other tomographic back-projection operators (Bishop et al, 1985; Stork, 1988) and make it
similar to the back-projection operator used by Sword (1987) for inverting CDR data. In
classical tomography, traveltimes are computed by use of two-point ray tracing; because the
Fermat principle can be invoked raypaths’ perturbations can be neglected. The derivatives
of the raypaths with respect to the velocity model are computed with the ray-tracing
method presented in Appendix C.

In section 2.3.1 I presented an algorithm for modeling the beam-stacked data by com-
bining the results of an initial-value ray tracing. Rays are traced from the shot position
and the receiver position until they meet at the reflector R(z, z,60). At fixed ray parame-
ters p, and pj, the result of modeling is the manifold h(r,y, m) defined in the data space;
each point of this manifold corresponds to a reflector R(z,2,8). Instead of starting from
an assigned mesh of surface locations, combining the results of ray tracing can start from
an assigned mesh of reflector positions. For each reflector position (z, z) the sets of down-
going and up-going rays are interpolated and combined to generate the two rays meeting
at (z,z). The transformed traveltime, the midpoint, and the offset correspondent to each
reflector position, can then be easily computed from the traveltimes and the starting sur-
face locations of the interpolated rays. If necessary the dip # at the reflector position can
also be easily estimated.

Therefore the modeling establishes a mapping, function of the velocity model m, from
the reflector space (z,z) into the data space (r,y,h). The mapping can be expressed by
the triplet of functions [r(z, z,m), y(z, z,m), h(z, z,m)]. These functions can be combined
for evaluating the offset as a function of traveltime and midpoint; the composite function
is h (r(z, z,m), y(z, z,m),m). Differentiating this composite function with respect to the

velocity model, by use of the chain rule, I obtain
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The only unknowns in this equation are the Frechet derivatives dh/dm. The partial
derivatives Oh/37 and dh/dy can be evaluated at a constant velocity model, but with
a varying reflector position, on the manifold h(r,y) defined by ray tracing. The partial
derivatives §h/ém, 67/6m, and §y/ém can be computed at constant reflector position
(z,z), by use of the ray tracing presented in Appendix C. Equation (3.10) can thus be

solved for h/0m and rewritten as

_ ok
(z.,2) dy
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This equation allows us to evaluate the elements of the back-projection matrix G}:;
these elements are the combination of terms that depend on raypaths perturbations (§h/ém,
§7/6m, and §y/6m), with terms that are related to the perturbations in the modeling func-
tion caused by reflectors’ movement (8h/d7 and dh/dy). In Appendix E equation (3.11)
is rederived in way that directly relates the reflectors’ movements to the derivatives used
to compute dh/dm. That Appendix also shows how the reflectors’ movements are deter-
mined by imposing the constraint of keeping constant the transformed traveltime and the
midpoint; that is, by constraining the modeled data-points to follow an event in the data.

Figure 3.2 and Figure 3.4 show examples of the back-projection operator GI computed
by use of equation (3.11). Each row of the matrix G’;': corresponds to a velocity model
parameter, while each column corresponds to an event in the data. The figures show a
column of G’;';; that is, they show the amplitudes of the operator for a given event in
the data as a function of the location of the model perturbation. The velocity model is
parametrized in slowness with B-spline functions (Appendix D). The operator appears to
be smooth because the figures show the operator resampled on a grid much denser than
the original B-spline parametrization.

Figure 3.2 shows the amplitude of a column of G{ when the background velocity is
constant and equal to 2 km/s. The midpoint ray parameter is zero and the offset ray
parameter is .06 s/km. The operator is non-zero in a band around the down-going and
the up-going rays. Above the rays the operator is positive (light in Figure 3.2) and below
it is negative (dark in Figure 3.2). A slowness anomaly above the ray makes the ray
travel more horizontally, and therefore causes an increase in the offset; below the ray an
anomaly makes the ray travel more vertically and thus causes a decrease in the offset.

These effects are in agreement with the offset perturbations caused by a velocity anomaly
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in the beam stacks of the synthetic data presented in section 2.4. The amplitudes of the
operator decrease with depth because the effects of ray bending on beam stacks’ offset
increase with the distance traveled by the bent ray.

Figure 3.3 shows the cross-section of Figure 3.2 taken at a constant depth of 180 m.
The amplitudes of the operator are antisymmetric around the rays and they look like the
amplitudes of a smoothed “first derivative” operator.

Figure 3.4 shows the amplitude of a column of G;"; when the background velocity has a
constant lateral gradient of 1 s™1, with velocity increasing from left to right. The midpoint
ray parameter is zero and the offset ray parameter is .06 s/km. The lateral gradient in
velocity causes ray bending and consequently the operator bends with the rays. The dip of
the reflector is caused by the ray bending. Figure 3.5 shows the cross-section of Figure 3.4

taken at constant depth of 180 m.
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FIG. 3.2. The back-projection operator GT for one event in the data as a function of the
location of the slowness anomaly. The migpoint ray parameter is zero and the offset ray
parameter is .06 s/km. The operator is spatially localized around the rays. Light areas
indicate positive amplitude and dark areas negative amplitude.
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FIG. 3.3. A cross-section of the back-projection operator shown above taken at a depth
of 180 m. The operator is antisymmetric around the rays and looks like a smoothed first
dertvative operator.



-49-

Midpoint (m)
0 400 800 1200

00¥%

(ur) gideq

008

0027

FIG. 3.4. The back-projection operator Gf for one event in the data when the background

velocity has a constant lateral gradient of 1 s™1. The midpoint ray parameter is zero and
the offset ray parameter is .06 s/km. The dip of the reflector is the effect of ray bending
caused by the lateral gradient in velocity.
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FIG. 3.5. A cross-section of the back-projection operator shown above taken at a depth
of 180 m.
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3.3 ALGORITHMS FOR SOLVING THE OPTIMIZATION PROB-
LEM

The maximization of the objective function of equation (3.8) is a hard optimization problem
because it presents difficulties of global convergence as well as of local convergence. The
objective function has many local maxima and it is highly non-quadratic. At the beginning
of the optimization procedure, when the velocity model is distant from the true model,
the first priority is to converge towards the true model and to avoid the local maxima.
The non-quadratic behavior of the objective function is mostly determined by the low-
wavenumber components of the velocity model. Therefore to start the estimation, I apply
a conjugate-gradient algorithm that converges to a robust estimate of the low-wavenumber
components of the velocity model. When the low-wavenumber components of the solution
are close to the true model the objective function is well approximated by a quadratic.
This locally quadratic problem is not well conditioned because some high-wavenumber
components of the model are poorly determined, as in all tomographic estimation. At
this stage of the estimation procedure I apply a Gauss-Newton algorithm that exploits
information on the second derivatives of the objective function, for rapidly converging to
the best estimates of the velocity model that is consistent with the beam-stacked data and

the a priori assumptions.

3.3.1 Global convergence—Conjugate gradient algorithm

The objective function [equation (3.8)] is the sum of the composite functions B;(h;(m)),
which are composed of the modeling functions h;(m) and the fitting functions B;(h). The
objective function would be quadratic if the modeling functions were linear and the fitting
functions were parabolic. These conditions do not hold in field data applications and
therefore the objective function is non-quadratic and it has many local maxima.

The primary cause of the non-quadratic behavior of the objective function is the non-
parabolicity of the fitting functions B;(h); that is, beam stacks’ semblance as a function of
offset. Semblance usually has isolated peaks and it is not significantly different from zero
in between the peaks. In the neighborhoods of the peaks, semblance can be well approxi-
mated with parabolas, but away from the peaks it is not parabolic at all. Semblance peaks
correspond to events in the data; an event is detected when its offset is approximately pre-

dicted by the current velocity model. Until the most of the events are detected, the fitting
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functions are non-parabolic, the objective function is not-quadratic, and the convergence
of the optimization process is slow. The same problem is aggravated by the non-linearity
of the modeling functions h;(m). The modeling functions are evaluated from the results of
ray tracing (section 2.3.1). Ray bending and the reflectors’ movements make the modeling
functions non-linear. The effects of ray bending and reflectors’ movements are taken into
account in the linearization of the modeling function represented by the linear operator G,
(section 3.2.2), but the simple linear model is not valid when the velocity perturbations
are large.

The non-quadratic behavior objective’function, which causes a slow convergence of
the optimization process, is mostly determined by the low-wavenumber components of the
velocity model. These low-wavenumber components of the model strongly influence ray
tracing, and therefore they determine the detection of the events and the non-linearity of
the modeling functions. The convergence can be improved if the estimation is started from
the low-wavenumber components of the velocity model. Furthermore, the low-wavenumber
components of the model can be parametrized with only few B-spline functions. Reducing
the number of model parameters has the double advantage of reducing the number of

iterations needed for the solution to converge and of decreasing the cost of each iteration.

Starting the estimation from the low-wavenumber components of the model, and slowly
increasing its bandwidth, is also an heuristic solution to the problem of local maxima
caused by multiples (Toldi, 1985). The majority of the semblance peaks correspond to
the primary reflections, but others correspond to multiples and artifacts. Multiples and
artifacts cause local maxima in the objective function that should be avoided by the op-
timization process. Multiples influence the estimation process only if they have been
detected by the current velocity model. Primary and multiples can be usually detected
by the same interval velocity model only if the model is rapidly changing. The idea is
to constraint the solution to be stiff until the estimation has detected the primaries; the

constraints are softened when the current solution cannot be influenced by the multiples.

A robust optimization algorithm, with strong global-convergence properties, must be
used for solving such a non-quadratic problem. Among the optimization algorithms based
on the derivatives of the objective function, the ones utilizing the first derivatives have the
best global-convergence properties. I choose a version of the conjugate-gradient algorithm
derived by Polak-Ribiere (Luenberger, 1984) that is particularly efficient in solving non-

quadratic problems. The scheme of the algorithm that I use for starting the estimation
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process is thus

Set initial parametrization and starting model mgo = m.

Set k= 0.

Compute by ray tracing hg = h(myg) and G, o(mg).

Compute by finite difference D g(hg).

Compute the gradient go = VQp = G;",‘,oDh,o — 2Cm " (mo — m).
Set the search direction émgy = go.

Find o that maximizes Qj (h(mg + apdmyg)).

Update the model m; = mg + apémyg.

[ Set k=k + 1.

Compute by ray tracing hy = h(myg) and G, x(my).

Compute by finite difference Dy, (hg).

Compute the gradient g = V@), = G{th,k — 2Cy 1 (my — 1n).
_ T
fgk 8k—1) 8k 5mlc—1-

Compute the search direction dm; = g + oy
Bi_18k-1

Find o that maximizes Q) (h(my + oxbmyg)).

Update the model my 1 = my + opdmy.

Check for convergence.

Increase the bandwidth of the parametrization.

Set mg = my;.

Check for convergence.

The low-wavenumber components of the velocity model usually converge close to the
true model after few iterations of the previous algorithm. At this stage, the perturbations
of the low-wavenumber components of the model are rather small and the modeling func-
tions can be considered linear, because the first-order effects of the ray bending and the
reflector’s movement were taken into account when the linear operator G, was evaluated.

If the modeling functions are linear, the operator Gy, is independent of the model, and the
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offset perturbations Ah, caused by the model perturbations Am, are computed by use of
the simple linear relation Ah = G,Am. The advantage of this linearization is a saving of
the great computational effort that in the previous algorithm is taken by the ray tracing
necessary at each iteration for modeling and evaluating the linear operator Gj. (The
matrix G}, can be stored on disk and used for many iterations of the conjugate-gradient
algorithm. The matrix G is usually small enough that is practical to store it on disk
because the model has been parsimoniously parametrized with B-spline functions. The

matrix would be much larger if the model were less efficiently parametrized.)

The following algorithm can thus be substituted for the inner loop of the previous

algorithm.

Set k=k+ 1.
Compute hy =hyg_1 + ax-1Gxoémg_;.
Compute by finite difference Dy i (hy).

Compute the gradient g = VQ) = Gf,oDh,k - ZCm_l(m;c — 1m).
_ T
(8r—8r-1)"8k 5mk—1-

Compute the search direction ém; = g + =
gk_lgk—l

Find oy that maximizes Qj (hy + apGpodmy) .

Update the model my 3 = my + axdmy.

Check for convergence.

The line search is an important part of these algorithms. For accurately estimating the
step size, there are many methods that require a limited number of function evaluations.
I used an iterative line-search algorithm that fits a quadratic function to the objective

function and evaluates the objective function at the maximum of this quadratic curve

(Luenberger, 1984).

The algorithms presented in this section could be used until complete convergence of
the optimization process. But, when the current solution is sufficiently close to the true
velocity model, the efficiency of the procedure can be improved by using the Gauss-Newton

algorithm presented in the next section.
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3.3.2 Local convergence—Gauss-Newton algorithm

The fitting functions can be well approximated by parabolas in the proximity of the sem-
blance peaks. Therefore the optimization problem is approximately quadratic when the
low-wavenumber components of the model have been determined and all the primaries
have been detected. This locally quadratic problem is ill-conditioned, because some high-
wavenumber components of the model are poorly determined. In any tomographic es-
timation the high-wavenumber components of the model are less determined than the
low-wavenumber components because they have a smaller effect on ray-tracing and the
ray coverage is limited. Some of the high-wavenumber components are completely unde-
termined by the data, but others can be recovered if the estimation process is allowed to
converge fully. Because the problem is approximately quadratic, the convergence of the
optimization procedure can be substantially improved when the information on the second
derivative of the objective function is used.

The Hessian of the objective function can be derived from the gradient in equation (3.9):

2 2B. (h:.(m
BQ::ZaBI(ht( ))

-— -1 frd
om ; dm? 2Cm

H(m) =

Za%; dB; Zah.- 9’B; 3hi oy -1
dm? 9h; dm 9h? dm m

i t

SD;, + GI D,G;, - 2Cm 71, (3.12)

where D3 is a diagonal matrix containing the second derivatives of semblance with respect
to offset.

The first term in the Hessian depends on the second derivatives of ray tracing with
respect to the velocity model. 1 drop this term because it is too expensive to compute.
Dropping this term implies the approximation of ray tracing with a linear function, which
is a sensible approximation, as I discussed above. Another reason for neglecting the first
term is that it also depends on D;, that decreases as the velocity model approaches the
true velocity model.

The approximate Hessian can be used in a classical quasi-Newton step (Gill et al.,

1981) and thus we find the search direction by solving the following linear system:

[GF(-D2)G) +2Cm Y] 5m = GID,, — 2Cm ™" (m — my). (3.13)
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The solution of this system is equivalent to the least-squares solution of the system

V-D2Gy (V=D3) "' D,

bm =~ , (3.14)

that can be efficiently solved using a conjugate-gradient algorithm such as LSQR (Paige
and Saunders, 1982).

The scheme of the Gauss-Newton method that I used is

Set starting model myg.
Set k =0.
Compute by ray tracing hy = h(myg) and G o(mg).

[ Compute by finite difference Dy, i (hy) and D, (hy).
Compute the search direction by least—squares
bmy = [GLo(~Dak)Gho +2Cm Y] [GFoDak — 2Cm ™" (my — ) .
Find o that maximizes Qp (hx + axGprobmy).
Update the model my; = my + opdmy.
Check for convergence.

Setk=k+1.

Compute hy =hy_; + a1 Gpobm;_;.

The approximation of the Hessian used for computing the search direction [equa-
tion (3.13)] is similar to the approximation that is made in the development of the Gauss-
Newton algorithm for solving a non-linear least-squares problem (Gill et al., 1981); there-
fore in the following discussion I will refer to this algorithm as the Gauss-Newton algorithm.
The computation of the search direction using the system of equation (3.14) can also be
seen as a weighted dumped least-squares inversion of the forward modeling operator Gy,.
The weights are determined by the semblance second derivatives D,. The least-squares
inverse is applied to the vector of residuals D, 1D, which are equal to the distances of

the modeled data-points from the semblance peaks.
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The second derivatives D, estimated from the data might be not reliable enough to
be used in equation (3.14). In this case the second derivatives can be set to be inversely
proportional to the depth of the reflectors, because the width of the peaks in the beam

stacks is proportional to the width of the Fresnel zones of the reflections.

3.3.3 Synthetic example

I tested the estimation method on the synthetic data-set that I presented in section 2.4.
The data were modeled by a finite-difference program assuming a constant slowness back-
ground of .4 s/km and a circular slowness anomaly with minimum slowness of .357 s/km.
The slowness model is estimated with the reflections from a single dipping reflector. The
reflector is below the anomaly and is dipping at 20°. Figure 3.6 shows the slowness function
assumed for modeling the data.

The data were beam-stacked according to six offset ray parameters pp: from pj equal
to .04 s/km to p, equal to .095 s/km. Along the midpoint direction the data were de-
composed according to seven midpoint ray parameters p,: from p, equal to -.333 s/km to
py equal to —.273 s/km. The beam-stacked data were transformed according to the time
transformation defined by equation 3.4 and smoothed along the time and midpoint axes
with a Gaussian window. The slowness model was parametrized with B-spline functions,
using one basis function every 70 m in the vertical direction and one every 150 m in the
horizontal direction. The nature and the size of the problem did not require that the
parametrization of the model be changed during the estimation process.

To start the slowness estimation, I applied the conjugate-gradient algorithm presented
in section 3.3.1. The starting model was the constant background slowness of .4 s/km.
Figure 3.7 shows the solution produced by 2 iterations of the conjugate-gradient algorithm;
the intensity scale in this figure is the same as in the figure showing the true model
(Figure 3.6). After 2 iterations the anomaly has been roughly localized in the horizontal
direction but it is smeared in the direction perpendicular to the reflector. In this direction
the model is poorly resolved because of the ray coverage of the anomaly is limited in
angle. However, the anomaly can be better resolved if all the information contained in the
data is exploited. At this stage of the estimation the objective function is approximately
quadratic because the model is close to the true model and the predicted offsets are close
to the offsets of the beam stacks’ peaks. I thus switched to the Gauss-Newton algorithm

described in section 3.3.2. The solution produced by 2 iterations of this algorithm is shown
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in Figure 3.8. Figure 3.9 shows a horizontal cross section of the slowness model shown in
Figure 3.8 (dashed line) compared with the true slowness (solid line). The cross sections
were taken at the center of the slowness anomaly; that is, at a depth of 700 m.

The estimated anomaly is fairly well localized, although it is still smeared in the direc-
tion perpendicular to the reflector and it has two negative side-lobes. These limitations
in the resolutions are caused by the null space in the relation between the model and the
data (Stork, 1988; Fowler, 1988). The null space is reduced because I used multiple ray
parameters to describe the non-hyperbolic moveouts in the data, but it is not empty be-
cause of the limited ray coverage of the anomaly. The ray coverage depends on the cable
length (1500 m) and on the reflectors’ geometry. The resolution of the estimation would
improve if there were more than one reflector and more than one reflectors’ dip, as in the

real data example presented in the next chapter.

3.4 CONCLUSIONS

The velocity model can be estimated from beam-stacked data by the solution of the opti-
mization problem formalized in Chapter 2. The estimation procedure requires the evalua-
tion of a linear operator that relates perturbations in the velocity model to the consequent
variations in the beam stacks’ kinematics. I thus derived an operator that can be used for
computing the changes in the beam stacks’ offsets of a fixed event in the data, caused by a
given velocity perturbation. Consistently following the same event in the data is necessary
for the stability of the estimation process, because seismic data contain a discrete set of
events.

The optimization problem for estimating velocity is non-quadratic and ill-conditioned.
In this chapter I presented an optimization procedure for solving this hard problem. The
procedure starts with a conjugate-gradient algorithm that converges close to the true model
and then it switches to a a Gauss-Newton algorithm that resolves the less determined
components of the model.

The proposed algorithms have been successful in the estimation of a velocity anomaly
from synthetic data. Although the velocity model is poorly determined by the data my

tomographic estimation has well focused the velocity anomaly.
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FIG. 3.6. The slowness model used to model the synthetic data. The background slowness
is .4 s/km and the circular slowness anomaly is a Gaussian function with minimum slowness
of .357 s/km. The dipping reflector has a dip angle of 20°.
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FIG. 3.7. The slowness model after 2 iterations of the conjugate-gradient algorithm pre-
sented in section 3.3.1; the intensity scale in this figure is the same as in the figure showing
the true model (above). The anomaly has been roughly localized in the horizontal direction
but it is smeared in the direction perpendicular to the reflector.
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FIG. 3.8. The slowness model after 2 iterations of the Gauss-Newton algorithm presented
in section 3.3.2. The estimated anomaly is fairly well localized, although it is still smeared
in the direction perpendicular to the reflector and it has two negative side lobes because
of the limited ray coverage of the anomaly. The result would improve if the cable length
were longer (1500 m) and there were more than one reflector.
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FIG. 3.9. A cross section of the slowness model shown in Figure 3.8 (dashed line) compared
with the true model (solid line). The cross sections were taken at the depth of the center
of the slowness anomaly; that 1s at a depth of 700 m.



