Appendix C

Least-squares inverses for time-invariant

transforms

C.1 Introduction

Stacking along straight lines or hyperbolas was repeatedly applied in previous chapters
as part of velocity filtering and moveout estimation. In these applications, the stacking
trajectories had the particular property of time-invariance; that is, independence from the
time-origin. The reason for stacking along time-invariant trajectories is that the drill-bit
source operates continuously in time, rather than being activated at known times as other

conventional seismic sources.

Stacking along straight lines, or also slant stacking, is an example of a linear time-
invariant transform that is well known in the field of seismic exploration (Claerbout,
1985b). Another example is the parabolic transform (Hampson, 1986). On the other

hand, the Normal Moveout (NMO) transform is not time-invariant.

Since the early applications of the slant-stack transform, it was recognized that the fi-
nite aperture of the transform — limited range of offsets and ray parameters — introduces
undesirable artifacts and loss of resolution (Schultz and Claerbout, 1978). By formulating
the computation of a transform as a least-squares estimation problem, Thorson and Claer-
bout (1985) demonstrated a method for overcoming the limitations due to finite aperture
for a class of linear transforms including the slant-stack transform. Beylkin (1987) for-
mulated efficient algorithms for the inversion of time-invariant linear transforms in the

frequency domain.
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In this appendix, I combine the previous approach of least-squares inversion in the
frequency domain with the new observation that the inversion operators have a Toeplitz
structure. The Toeplitz structure is a consequence of applying time-delays that depend
linearly on the ray parameter. Therefore the Toeplitz structure is present also when the
data are irreqularly sampled in the offset domain, or when the stacking trajectories are

parabolas instead of straight lines.

The Toeplitz property allows considerable savings in computational time and storage of
the inverse operators both for under-determined and over-determined least-squares prob-
lems. Further, I show how the numerical stability of the inverse transforms is related to
sampling rates in ray parameter and frequency, and apply these results to the design of

transforms with frequency-dependent apertures.

This appendix is organized in three parts: first, I review definitions of least-squares
inverses; then I show how to use the Toeplitz structure of the matrix of normal equations
in the computations of the least-squares inverses; third, I derive conditions on the optimal

sampling in ray-parameter space.

C.2 Linear time-invariant transform pairs

C.2.1 Definitions of transforms in the time domain

Slant-stack transform

The discrete slant-stack transform is defined in the time-offset domain as
m(r,p) = Y_d(z,t =1+ px), (C.1)
z

where the data d(z,t), a function of offset and time, are summed along the straight line

t = 7 + pz, parametrized by ray parameter p and intercept traveltime r (Thorson, 1985).

More generally, the data could be multiplied by a function of offset w(z) befdre sum-

mation:

m(r,p) = Zw(z)d(z, T =1t+ pz). (C.2)
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The weights w(z) could be proportional to the distance between channels and thus account
for irregular recording geometry, or they could be a window function applied to reduce

truncation effects along offset (Thorson, 1985).
Parabolic and hyperbolic transforms

In the parabolic transform, the straight-line stacking trajectories of the slant stack

transform are replaced by parabolas centered at zero offset and defined by the following

expression:
_ 2
t =1+ pzx®,

where 7 is the intercept time at zero offset and p is a parameter related to the curvature at
zero offset. The formal definition of the parabolic transform, analogous to Equation C.1,

1s then:

m(r,p) = Zw(m)d(m,t =1 + pz?). (c.3)

z

The hyperbolic transform — a stack along hyperbolas — was defined in Chapter 3 and

referred to as a velocity transform (Equation 3.1):

(z,tzr—i- 2,2_{_32) . (C.4)

v(z)

m(r,z,s) = > w(z)d

z

because the parameters of 2z and v(z) have a physical interpretation, respectively as the

depth to a point source and the RMS velocity in a horizontally layered medium.
Dimensions of the slant-stack operators in the time domain
Denoting the slant-stack operator by £, Equation C.1 can be written also as
m = [d.

The data vector d has dimensions n, X n¢, while the model vector m has dimensions n, x n,.

Thus a matrix representing the operator £ would have n, X n, rows and n; X n; columns.

The conjugate-transpose LY of this operator maps data from the r — p domain to the
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original # — t domain,

Figure C.1 illustrates the impulse responses of the operators £ and £¥ L. The operator
LY [ approximately reconstructs the original spike. The artifacts along straight lines in

the time-offset domain are due to the limited range of ray parameters of the transform.

Ray—parameter (s/km) Offset (km)

FIG. C.1. Impulse responses of

the operators £ and £L¥ L. Both,

the slant-stack transform opera-

tor £ and its complex-conjugate = =

LY map impulses into straight E E

lines. Thus, the operator £H —~ —~

reconstructs approximately an ~ ~

impulse as a superposition of

straight lines.

£ e

C.2.2 Slant-stack transforms in the z — w and p — w domains

Applying the Fourier Transform to Equation (C.1) leads to

m(w,p) = Zd(z,w)ej“’”z, (C.6)

where now a time-shift is expressed simply as a multiplication by a complex number. After
the Fourier Transform has been applied, different frequency components of the data can be

transformed to the w — p domain independently from each other. The transform operator
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L is represented at each frequency by a matrix L of dimensions n, x n,, whose elements

are:

o iz,

(C.7)

=
fl

eIWPnpTL  JWPnyZng

Similarly, the complex-conjugate operator £H is represented at each frequency by the

matrix LY, that is the conjugate-transpose of the matrix L in Equation C.7.

C.2.3 Two forms of the least-squares inverse

When the sampling is uniform in ray parameter, the following identities hold for the

elements of matrix L (Equation C.7):

Lpz — ejwzkAp — (ejszp)k.

Thus the entries along each column of the matrix L are increasing powers of the same com-
plex number. A square matrix with this property is called a Vandermonde matrix (Golub
and Van Loan, 1984), and such matrices have full rank, unless two of their columns are
identical. Assuming that L is rectangular with more rows n, than columns n,, necessary

and sufficient conditions for L to be full rank equal to n, are that the complex numbers

Cm,
Ay = ejwzmAp
?

be distinct from each other. Two particular cases when L will be singular are when wAp
1s zero, or when the transform is aliased. Similar results hold when the sampling in offset,

instead of ray parameter, is uniform.

The least-squares inverse of the operator LH (equation C.5) can be computed by either

one of two operators (Beylkin, 1987),

(LLH)'L, (C.8)
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or

L(LEL)-L. (C.9)

Identity of the two last-squares inverses

These expressions for the operators assume that the least-squares residuals are uncor-
related. When there are events in the data that cannot be well explained by the model
— either because of errors in the observations, or because the range of model parameters
is limited, then the least-squares inverses need to be modified to account for the noise
(Tarantola, 1987). I will return to the discussion of such a model later, and continue now

with properties of the noise-free least-squares inverses.

The two operators for the noise-free case are identical, as can be seen when we introduce
the singular value decomposition (SVD) of the matrix L. The SVD factors the matrix L

into the product of three matrices U, 2, and V of dimensions respectively n, X n,, ny X ng,
and n; x n, (Golub and Van Loan, 1983):

L = USVH,

The matrices U and X are the matrices of left and right eigenvectors, while the matrix 3

is the diagonal matrix of singular values.

The identity of the two least-squares inverses,
@LH)~'L = LEILEL)! = Ux~IvH
follows from a straightforward substitution of the SVD decomposition into Equation C.8:
(LLY)™! = Uz~?Uf;
and into Equation C.9:

(LFL)~! = v
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Properties of the two least-squares inverses

The first operator (Equation C.8) is the familiar product of the conjugate-transpose
and the inverse of the matrix of normal equations. This form of the least-squares inverse
operator is well known; it is used for instance in prediction problems in time-series analy-
sis, where prediction filters are obtained as solutions to overdetermined systems of linear

equations.

The second form of the inverse operator (Equation C.9) has found applications mainly
in problems of interpolation and spline fitting (Mallet, 1989) where the number of un-

knowns — values of a function at a grid node — far exceeds the available data and

requires the solution of an underdetermined linear problem.

To understand how this second operator can be used as an interpolator, consider the
expression of the model vector m (n, elements for a particular frequency w) in terms of

the data vector d (n, elements at the same frequency):

m = L(LYL) 14

The elements of the matrix L can be thought of as providing a set of basis functions

hp(z), which for the slant stack transform are
hy(z) = £79P=,

The vector of coefficients b of the decomposition of the model vector m on that basis are

obtained from the equation
m = Lb,

by solving the system of linear equations:

d = (LHL)b.

The dimensions of the operator LEL are n, X n., independent of the number of values
for the ray parameter p. Thus the size of the system of linear equations remains constant

as the sampling rate in ray parameter p increases. In contrast, the dimensions of the



-80-

operator LLH are np X ng.

Solving a linear system of equations with a full-rank left-hand side matrix is attractive
from a numerical point of view. Therefore the operator LL! should be used for over-

determined linear systems (n, < n;), and the operator LEL for under-determined systems
(nz < np).

However, the rank of the operator is not the only criterion in choosing between the two
forms of the inversion operator. In a later section, I will show that taking advantage of the

different structures of these operators may justify solving a rank-deficient linear system.

C.2.4 Finite-aperture versus infinite-aperture inverse

An analytical expression for the least-squares inverse of the slant-stack transform was de-
rived in the frequency-wavenumber domain by Thorson (1985). Thorson’s results indicate
that the least-squares inverse for the infinite-aperture transform LY — that is a transform
with infinite range of offsets and dips — is the operator £, followed by a one-dimensional
rho-filter, whose transfer function is |w|. According to these results, the finite-aperture

operator (£ L’,H)‘l should tend to a rho-filter as the aperture increases.

Intuitively, the effect of limited aperture will be strongest for the lowest wavenumbers,
that is also at low frequencies. At high wavenumbers however, aliasing will occur. In
between, there will be a range of frequencies and wavenumbers in which the finite-aperture
and the infinite-aperture inverses should be equivalent. This intuition is confirmed both

by Thorson’s analysis, and by results given later in this paper.

C.2.5 Inverse transform in the presence of noise

In theory, when the noise on the data is modeled as a Gaussian random process and
described by a covariance matrix Cp, it is possible to write an expression for the maximum-
likelihood estimator of the model parameters (Tarantola, 1987). The least-squares inverse

operators in Equations (C.8) and (C.9) become then

(LCp~'LY)~'LCpY, (C.10)
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and

L(LYL + Cp)™t. (C.11)

In practice, the estimation of signal or noise statistics is a challenging task. The
approach often suggested is to introduce a parametric model for the signal, such as an
autoregressive model for time series (Burg, 1975), or the superposition of a few plane waves

in array processing (Schmidt, 1981; Bresler and al., 1988; Biondi and Kostov, 1989).

An alternative approach, the one developed in this paper, is to increase the number
of model parameters, until the residuals become uncorrelated. This second approach is
more robust than the first one, because it does not require that the data conform to a
particular parametric model. On the other hand, its resolution may be inferior when the

model assumptions are appropriate.

C.3 Toeplitz structure of the matrix of normal equations

C.3.1 Toeplitz structure

From the definition of the matrix L in Equation C.7, I obtain an expression for the elements
of the matrix LLY :

Xmax Xmax
G(p’ q) — Z eIWPT mjwgT E er(p-q)z’ (C.l2)

z=0 z=0
where p and ¢ are ray parameters, constant along rows of the matrix L, and the offsets
range from zero to Xmax. For uniform sampling in the ray parameter, (p — ¢) is constant

along diagonals, and hence the entries of the matrix are also constant along diagonals.

A further property of LLY is that symmetric elements with respect to the diagonal
are complex-conjugates, and therefore the matrix is Hermitian-Toeplitz. The Hermitian-
Toeplitz property holds also for irregular sampling along offset and for offset-dependent
weights applied to the data.

For a parabolic transform (Equation C.3) with weights w(z) along offsets, the elements
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of the matrix corresponding to LLY become

anx
H(p,q) = > &P~ 95%2(g),

z=0

In the case of a hyperbolic transform (Equation C.4) the Toeplitz property holds only
if there is only one depth parameter and the sampling in slowness (inverse of velocity) is
uniform.

When the sampling in offset z is also uniform, the entries of the matrix LL¥ can be

expressed as

jwpz  ~Jjwqz Sianmaxp-—-q jW(Xmax—62)(p—
Glp,q) = 3 eforremives = ( Lo p‘_q))))ea (Kmax—=02)(p=0)/2 (C.19)

Similarly, the matrix LHL is Hermitian-Toeplitz when the sampling in offset z is reg-

ular.

To illustrate graphically the Toeplitz property, Figure C.2 displays the magnitude of
the elements of the matrix LLH for three different frequencies. At low frequencies the
matrix is most different from a diagonal matrix; this property confirms that effects of
finite aperture are most strongly felt at low frequencies. At intermediate frequencies, the
matrix is diagonally dominant; the results of the finite- and infinite-aperture filters should
be similar. At high frequencies aliasing introduces identical rows and columns and the
matrix becomes singular. Because of their Toeplitz property, each of the matrices LLH
can be specified by a single column or row. The first rows of these matrices are shown as
a function of frequency in Figure C.3, where points with the same wavenumber lay along
hyperbolas. The hyperbolas corresponding to wavenumbers that are integer multiples of

the Nyquist wavenumber are clearly apparent, because of their high amplitude.

C.3.2 Properties resulting from the Toeplitz structure

Storage

The elements of a Toeplitz matrix are constant along diagonals. Thus, in general, 2n

complex numbers define a n X n Toeplitz matrix. When the matrix is Hermitian, only n
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6 Hz 30 Hz 60 Hz

FIG. C.2. Magnitude of the elements in the matrices LL¥ for frequencies equal to
6, 30, and 60 Hz. The matrices are rectangular, with as many rows and columns as there

are ray parameters in the transform (Equation C.12). The matrices LLY differ most
from a diagonal matrix at low frequencies and become singular because of aliasing at high
frequencies.

numbers are needed.

Levinson recursion

The Levinson recursion is a fast algorithm for solving systems of linear equations
with a left-hand side Toeplitz matrix and a canonical right-hand side vector of the form
(1,0,...,0). Solving for an arbitrary right-hand side vector requires only a minor modifi-

cation to the algorithm (Claerbout, 1985).

The recursive solution of a system of Toeplitz linear equations of order n by the Levin-
son algorithm requires about 2 x n? floating point operations, only twice the cost of a
“matrix times vector” multiplication. The Levinson recursion is computationally efficient,
because the solution to a system of order n is expressed simply in terms of the solution to
a subsystem of equations, also Toeplitz, of order (n—1). At each order of the recursion, the
Levinson algorithm computes a reflection coefficient! solution to the canonical system of
equations defined above. Given any one of the three sequences — a column of the Toeplitz
matrix, the reflection coefficients, or the solutions at each order — the two other sequences

can be computed by the Levinson recursion (Marple, 1987).

!Cosine of the angle between a vector, and its copy shifted by one element, (Claerbout, 1985a)
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FIG., C.3. First column of the
Toeplitz matrices LLY as a func-

tion of ray parameter p and 0 215 510
o

Frequency (Hz)

frequency w. Points with the
same wavenumber, product of fre-
quency times ray parameter, lay
along hyperbolas. The two hy-
perbolas of high values seen in the
bottom right corner of the panel
correspond to the Nyquist and to
twice the Nyquist wavenumbers.
Aliasing of the transform occurs

when wavenumbers span an inter-
val larger than twice the Nyquist
wavenumber.

(wx/s) 19r9wrered-Ley

Precomputing the data-independent inverse transforms

The least-squares inverses to the slant-stack transforms (Equations C.8 and C.9) are
data-independent. Therefore the inverse operators could be precomputed and applied to

several data sets, such as common midpoint (CMP) gathers of a seismic survey.

When precomputing the least-squares inverses storage requirements may be a concern.
Computations are reduced to a minimum when the inverse matrix is precomputed and
stored. However, the inverse matrix of a Toeplitz matrix is only persymmetric (symmetric
about the secondary diagonal); therefore storing the inverse of a Hermitian-Toeplitz matrix

would require about n?/4 elements.

One alternative, achieving a compromise between storage space and computational
savings would be to store the n reflection coefficients, and recompute from them the

Cholesky decomposition of the inverse of the Toeplitz matrix (Matrix, 1987).

Finite-aperture unitary transforms

The rows of the matrix L (Equation C.7) represent vectors — steering vectors — whose
elements are complex exponentials as a function of the offset. These vectors belong to the

data space and have all the same norm.
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The matrix LLH represents the complex dot products of the steering vectors. When
this matrix is diagonal, the steering vectors form an orthogonal basis in the data space.
Further, when data and model spaces have the same dimensions, the orthogonality of the
rows of L implies also orthogonality of the columns vectors, and the matrix of the linear

transform is a unitary transform.

Working with a unitary transform has several advantages: repeated least-squares trans-
forms between data and model space can be done fast and accurately, and there is least-

redundancy between the model parameters and therefore the resolution is improved.

The Cholesky factorization of the inverse of a Toeplitz matrix (Marple, 1987) can be
applied in order to obtain finite-aperture unitary transforms. Such unitary transform is
perhaps most helpful for working with hyperbolic or parabolic trajectories where choosing

orthogonal steering vector is not obvious from considerations of sampling.

C.3.3 Stability of the inverse, sampling, and resolution

The elements of the matrix LL! were defined in Equation (A.12) as a function of the ray
parameter. Because the product of frequency times ray parameter is a wavenumber, an

alternative expression for the elements of LL! in terms of wavenumber  is

Xmax
9lp,q) = > &%, (C.14)

z=0
where k& = (p — q)w. The magnitude of this last expression (Equation A.14) is also the
amplitude response to a plane wave incident on a linear array of length X,ax. Similarly
to Equation A.13 and for regular sampling in offset, this amplitude response is a discrete

sinc function.

Two remarks about the sampling in wavenumber follow from this observation. First,
the array response is periodic in wavenumber, with period equal twice the Nyquist wavenum-

ber, that is
2knyq = 1/Az.

Thus sampling over an interval larger than 2KnNyq introduces aliasing. Second, for a linear
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array of length X;.x and the stacking method, the lower bound on resolution is Ak, where

Ak = 1/Xmax.

The lower bound on resolution is also a lower bound on the sampling rate in wavenum-
ber. For sampling rates in wavenumber finer than Ak, not only is there no gain of resolu-
tion, but the system of normal equations LLH becomes ill-conditioned (Golub, 1983), as
rows and columns of the matrix of normal equations LLY become nearly identical. An-
other simple argument confirming the ill-conditioning of the matrix is that the reflection
coefficient computed by the first iteration of the Levinson recursion tends to one as the

sampling interval in ray parameter tends to zero.

In terms of ray parameters the conditions for aliasing and resolution become:

e Aliasing

Aliasing occurs for ray parameters p such that

2K, 1
e Prin + .
w wAz

pZPmin"l"

The number of ray parameters at which the transform is computed increases with

frequency in the following way

(Pmax - Pmin) — w(Pmax - Pmin)Xmax
Ap 2r '

Np(w) =

e Sampling

At a given frequency w the optimal sampling rate in ray parameter is

Ak 1
Ap = — = .
P w Xmaxw

Thus, considerations about sampling and resolution recommend regular sampling of
the transform in the wavenumber domain. When the data are uniformly sampled in offset,
the slant-stack transform can be efficiently implemented via a 2-D Fast Fourier Transform
(2-D FFT). The orthogonal properties of the FFT imply that the matrices (LL¥)~! and

(LEL)~! will be equal to the identity. The inversion of Toeplitz matrices will therefore be
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necessary only when the sampling in offset is irregular, or when the traveltime delays are

not linearly dependent on offset, or when oversampling in wavenumber.

C.3.4 Aliasing

When there is aliasing, the matrices of normal equations for the inverse operators become
singular. The numerical singularity arises from the impossibility of separating sampled

signals whose wavenumbers differ by an integer factor of twice the Nyquist wavenumber.

Still, algorithms that compute the least-squares inverses must return an answer even
when the transform is aliased for some ray parameters. I have considered two options —
either set to zero the aliased points of the transform, or else keep the largest non-singular

matrix and then set to zero terms off the diagonal.

Aliasing can be overcome by using prior information, either in the form of an interval
of wavenumbers of length smaller than twice the Nyquist wavenumber, or by introducing
“a priori” information in Equations C.10 and C.11 via a model-covariance matrix Cps

(Tarantola, 1987):
(LCp~LE + Cp )~ LCp7Y, (C.15)
and
CuL(LACyL + Cp)~ L. (C.16)

The role of the model-covariance matrix is to make the matrices of normal equations
(Equations C.15 and C.16) non-singular, by assigning different likelihood values to the ray

parameters.

Synthetic examples

Figure C.4 compares the reconstruction of a synthetic bandlimited spike with the con-
jugate LH of the slant-stack operator, and with its inverse (£ £)~1. The input data consist
of a zero-phase bandlimited wavelet in the range of frequencies from 5 to 25 Hz, present
at a single trace in the middle of the gather. The least-squares inverse produces a sharper
output, with weaker sidelobes than the conjugate operator. The range of dips for both

operators is limited, and therefore neither is an exact inverse. However, the least-squares
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inverse produces a sharper, higher-frequency output than the conjugate operator.

FIG. C.4. Comparison of the inversion of a slant-stack transform with a conjugate (left)

and with a least-squares inverse (right) operator. Both inversion operators are dip-limited;
however, the least-squares inverse produces a sharper peak with fewer sidelobes.



