Chapter 2

ROBUST SIGNAL AND NOISE SEPARATION

2.1 Introduction

The dominant events in the data from the OGS experiment are noise: either uncorrelated
noise from trace to trace, or strong coherent noise from sources off the vertical plane
containing the seismic array. The goal of the processing sequence described in this chapter
is to enhance events in the range of moveouts expected for the wavefield emitted by a

source at depth.

Examination of the data suggests a classification of noise patterns into three groups
depending on the length of their spatial correlation. The different groups include first,
noise that occurs on isolated traces; second, narrowband noise on a few adjacent traces;

and, third, noise present over a large part of the array.

To suppress each of these three types of noise, I follow three different approaches. I at-
tenuate the spatially uncorrelated noise with weighted median filters, which unlike linear
filters are known to remove high-amplitude noise bursts without smearing. The weights
of the median filter are chosen to limit the effect of the filter on the spatially correlated
events. Next, to avoid suppressing drill-bit signal in further steps of the processing, I apply
velocity filtering to separate the data into two parts. Events outside a range of moveouts
expected for the drill-bit signal contain only noise. From these events, I estimate first the
narrowband noise by linear prediction along the time axis. Then I estimate the noise with
large spatial correlation by linear prediction along the offset axis. Finally, I use the two
noise estimates from the velocity-filtered data as regressors in a least-squares problem, in

order to attenuate the noise in the original data.
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To illustrate each step of the processing, I display all intermediate results for data
in 6 control windows, chosen for their different noise patterns. The final results of the
processing show that the noise has been well suppressed and reveal events with hyperbolic
coherency that were hard to see in the raw data. To emphasize that these hyperbolas are
not an artifact of the processing, I apply the processing sequence to field data that have

no correlation along offset; then, reassuringly, the output is also spatially uncorrelated.

To check the effect of the processing on a large volume of data, I compare amplitude
and dip spectra before and after noise attenuation. After noise attenuation, the amplitude
spectra are smoother. In the dip spectra, computed as a function of offset and dip,

significant energy remains only in the range of dips where drill-bit signal is expected.

2.2 Examples of data

A typical window of seismic data recorded during drilling is displayed in Figure 2.1. The
most conspicuous events are the spatially uncorrelated (random) noise and the spatially
correlated noise at the far offsets. The spatially correlated noise at the far offsets is present
on only a few traces, and has distinctive linear moveout and narrowband frequency content.
Events with hyperbolic moveout, as expected from the drill-bit signal, are not readily
apparent. The only processes that have been applied to these data are power equalization
(each trace has the same power in a window of 25 seconds), highpass filter with cutoff
frequency! at 8 Hz, and an adaptive notch filter that attenuates strong monochromatic

noise? generated by the mud pumps (Kostov, 1988).

Figure 2.3 displays six other windows of data chosen to illustrate significant changes
that have occurred in the noise patterns over a period of 4 h. During this period of time,
the depth of the drill bit increased by about 50 m (from 780 m to 840 m). Seismic data

were recorded for a total time of 10 min during this 4 h interval.

To understand better the signal and noise separation method and to be able to establish
limits of validity depending on the signal-to-noise ratios, I apply the same processing

sequence to synthetic data (Figure 2.2). The window of synthetic data is 1 s long, and has

!The goal of the 8 Hz cutoff is to attenuate ground-roll with apparent velocity as low as 0.3 km /s; noise
with wavenumbers below 25 km™! is not attenuated by the group arrays (Figure B.2).

®The variation of the frequency component removed by the notch filter is seen around 20 Hz in the
right-hand side panels of Figure 2.17.
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FIG. 2.1. A typical window of data illustrates random noise (uncorrelated from trace to

trace), strong coherent noise at the far offsets, and weak events with possibly hyperbolic
moveout. The coherent noise is propagating toward the well, its dominant frequency is
16 Hz, and its apparent velocity is about 4 km/s. The presumed hyperbolic event also has

a high apparent velocity, greater than 3 km/s.

the same sampling parameters as the windows of data from the OGS experiment shown in
Figures 2.1 and 2.3. The synthetic data are the sum of signal and coherent noise. I model
the signal as the sum of two hyperbolas with equal amplitudes and convolved with the
same wavelet (minimum phase Ricker wavelet, fundamental frequency of 40 Hz); one of
the hyperbolas has a moveout® as expected for a point source at depth of 0.8 km in a
medium of RMS velocity of 2 km/s, while the second hyperbola corresponds to a point
source at depth of 1 km and an RMS velocity of 3 km/s. The noise is the sum of strong

narrowband noise (16 Hz) on 7 adjacent traces in the middle of the gather, and, at the far

8See also the discussion on “Moveout correction,” page 16.
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offsets, of broadband noise with hyperbolic moveout corresponding to a source located off
the vertical plane containing the array. The broadband noise data are a window of marine

seismic data (Yilmaz and Cumro, 1983).

Offset (km)

FIG. 2.2. The synthetic data are
the superposition of signal (the
two hyperbolas with tops at zero
offset), and narrowband noise in a
window of seven adjacent traces,
as well as broadband noise with
large spatial correlation.

2.3 Attenuation of spatially uncorrelated noise by median smoothing

2.3.1 Overview

To attenuate the spatially uncorrelated noise, I apply weighted-median smoothing along
offset. I prefer median filters to linear filters in the early stages of the processing, because
median filters reject noise spikes rather than smear them as linear filters do. Although
median filters are non-linear, their spectral properties can be controlled to some extent
through the choice of weighting functions. I smooth the data in the frequency-offset
domain, where the spatially uncorrelated noise appears as spikes. Other datasets may
contain noise bursts in the time domain because of factors such as recording errors. For

these bursts, median smoothing should be applied first in the time-offset domain.
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FIG. 2.3. These windows of data illustrate the varying noise patterns, especially strong
at the far offsets. The only processes applied to these data are power equalization along
offset, highpass filtering with a cutoff frequency of 8 Hz, and adaptive notch filtering.
These windows of data are part of a 10 min data sequence, recorded within a period of
4 h. During that time the depth of the drill-bit increased by about 50 m.
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2.3.2 Weighted-median filters: review of definition and properties

Definition of the median

The median of N samples {s;}1<i<n is defined by Claerbout and Muir (1973) as a solution

to an L; minimization problem,

N
min s; — median]|. 2.1
D lss | (

=1

For sequences of real-valued samples, the median is any value between the middle two
values in the sequence {s;} : this property follows from a straightforward computation of
the gradient in Equation 2.1. More specifically, the computation of the median depends
on the parity of the number of samples N : for an odd number of samples, the median is
unique and equal to the sample of rank N/2+ 1, while for an even number of samples the
median can be any number between the samples of ranks N/2 and N/2 + 1. In numerical
computations a convention for a “unique” median may be required; a common choice? is

the average of the middle two values of the samples.

The median is less sensitive to outliers than is the mean; for instance, the median
values of {1,2,3} and {1, 2, 1000} are identical, while their mean values are very different.
Insensitivity to, or also, robustness to outliers is one reason for choosing the median as an

estimator of the central value of a distribution.

Median filters

The running mean of length n is a linear lowpass filter that averages n consecutive
samples from an input sequence. The output of the running median filter of length n is
defined similarly as the median of n consecutive samples from an input sequence. Although
the running median is a non-linear filter, it will also have a “lowpass effect” when the dis-
tribution of amplitudes of the input sequence is symmetric, because for such distributions

mean and median values coincide.

To illustrate the lowpass properties of the median filter, I apply a running median

filter to a sinc function (Figure 2.4), as was done originally by Claerbout and Muir (1973).

“For a more systematic definition of a unique median, that is valid also for data in higher-dimensional
spaces, see Dellinger (1984) and Zhang et al. (1988).
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The sidelobes of the sinc function have constant widths, equal to half the width of the
main lobe. Thus the sinc function appears locally as a sinusoidal signal of varying fre-
quency. A running median preserves the low-frequency main lobe while attenuating the

high-frequency sidelobes.

FIG. 2.4. Median filtering of a

discrete sinc function: )
Top: Discrete sinc function.

Middle: Output of a running

median with constant weights. “U U'

Bottom: Output of a running

median with triangular weights. [
The running median filters (mid-
dle and bottom panels) attenu-
ate the sidelobes of the sinc func-
tion, while preserving its main A b\l\m
lobe. A median filter with a tri-
angular weighting function (bot-
tom) introduces fewer “edges” in
the waveform than the uniformly
weighted median (middle).

>
-
>

Weighted median of real numbers

The concept of a weighted median (Claerbout and Muir, 1973) extends the previous

definition by weighting the terms in the objective function of Equation 2.1,

N
min ) " w;|s; — median]|, (2.2)

=1
with a sequence of positive weights {w;}.

Claerbout (1985a) relates the computation of the weighted median of real numbers to
the L1-norm solution of a system of linear equations, and gives a computer program based

on Hoare’s sorting algorithm.

Figure 2.4 illustrates also that a median filter with a triangular weighting function
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outputs a smoother signal than a uniformly weighted median filter.

Weighted median of complex numbers

The definition of the weighted median (Equation 2.2) is applicable not only to real
numbers, but more generally to samples in any vector space with a norm. In particular, I
will need to compute in later sections the median of complex numbers. However, the cost of
computing a weighted median by minimizing the objective function in Equation 2.2 using
general optimization methods, would be prohibitive in applications to large volumes of
data. Therefore, I approximate the weighted median of complex numbers by the complex
number whose real and imaginary parts are the weighted medians of the real and imaginary

parts of the input sequence.

These two definitions for a complex median will agree for symmetric distributions,
where median and mean are identical. I expect that the two definitions will yield similar
results when the data are modeled as a mixture of a symmetric distribution and a few
outliers. Indeed, outliers in a complex distribution will have in general a real or an imag-
inary part that is an outlier in the corresponding sequence of real or imaginary parts of

the data.
2.3.3 Median smoothing of drill-bit data

Moveout correction

In a medium of uniform velocity v, the traveltime delays from a source — located at depth
z and at zero offset — to receivers at offsets x along the surface are given by:
V2t + z?
t(z) = —m—. (2.3)
v
For a horizontally layered medium, the above equation still approximates the traveltime

delays, provided that the parameter v is interpreted as the RMS velocity of the medium
(Dix, 1955).
I apply a moveout correction, determined using the hyperbolic approximation for the

traveltimes (Equation 2.3), the known depth of the borehole, and the RMS velocities from

surface seismic data (Appendix B), to align approximately the direct arrivals from the
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drill bit. Thus, all data recorded for depths of the borehole between 0.8 km and 1 km,

have been moveout-corrected with the same parameters (Equation 2.3):
2 = 08km and v = 1.8 km/s.

A more precise, depth-dependent moveout correction is unnecessary before smoothing, and
might even introduce a bias in subsequent measures of changes in moveout as a function

of depth.

Median smoothing

The strong, spatially uncorrelated noise gives a “speckled” appearance to the data in
Figures 2.1 and 2.3. Fourier transform over the time axis separates better the spatially
uncorrelated noise from the spatially correlated noise shown in Figure 2.6, where strong

amplitude events with frequencies above 20 Hz are mainly spatially uncorrelated noise.

The effect of increasing filter length is shown in Figure 2.5, where the synthetic data
of Figure 2.2 have been smoothed, after moveout correction that flattens the hyperbola
with lower velocity. The weights of the two median filters are (1,2,1) and (1,2,3,2,1).
The 3-point-long median filter passes the data without significant changes, while the 5-
point-long filter has strongly attenuated dips that are high with respect to the moveout
correction. The amplitudes along the hyperbolas have not been modified significantly by

the smoothing.

I smoothe the data shown in Figure 2.6 by applying a a weighted median filter along
offset in the frequency-offset domain, after moveout correction. The weighting function is
a 5-point-long triangle, and the result of the smoothing is displayed in Figure 2.7. The
improved continuity along offset is clearly apparent in each of the three domains: time-
offset, frequency-offset, and frequency-wavenumber. The same robust smoothing improves
also the spatial continuity for each of the 6 control windows, shown before smoothing in

Figure 2.3 and after smoothing in Figure 2.8.
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FIG. 2.5. Synthetic data after application of median filters with triangular weighting func-

tions.

Left: 3-point-long triangular weighting;

Right: 5-point-long triangular weighting.
The 3-point-long median filter passes the data without significant changes, while the
5-point-long filter has strongly attenuated dips, that are high with respect to the moveout
correction. The amplitudes along the hyperbolas have not been significantly modified by

the smoothing.

Other approaches to robust smoothing

The weighted median smoothing is a procedure that is simple to implement and that
helped to attenuate the strong, spatially uncorrelated noise in the OGS data. The draw-
back of median filters is that they tend to distort the waveforms — an undesirable effect

that might outweight their advantages, especially on data with high signal-to-noise ratios.

Alternative approaches to the weighted median smoothing would be the two-step pro-
cess of detection and editing of noisy traces (Mavko, 1988; Anderson and McMechan,

1989), or smoothing with an alpha-trimmed filter (Bednar, 1983).
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FIG. 2.6. Window of data displayed in three domains before median smoothing. Large
positive amplitudes are plotted in white.

Left: Time-offset domain.
Middle: Frequency-offset domain.
Right:  Frequency-wavenumber domain.

2.4 Attenuation of coherent noise

2.4.1 Overview

The goal in this section is to attenuate time-coherent or space-coherent events whose
moveout differs significantly from the moveout expected from the drill-bit signal. To avoid
suppressing drill-bit signal along with the noise, I start with a crude separation of signal
and noise: I apply a velocity filter that removes events — signal or noise — whose moveout
is close to the expected moveout of the drill-bit signal. The parameters of the velocity

filter are such that no drill-bit signal remains in the passband of the velocity filter.

After velocity filtering, I observe two types of coherent noise with different correlation
lengths along offset: noise that is narrowband in time and present on only a few adjacent
traces, or noise that affects a large number of traces. In both cases, Iestimate the noise by
linear prediction from the velocity-filtered data — along the time axis for the first type of

noise, and along the offset axis for the second. Finally, to subtract the estimated coherent
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FIG. 2.7. Window of median-smoothed data displayed in three different domains. Large
positive amplitudes are plotted in white.

Left: Time-offset domain.
Middle; Frequency-offset domain.
Right: Frequency-wavenumber domain.

noise from the original (non-velocity-filtered) data I solve a small regression problem that

compensates for amplitude differences between the estimated noise and the noise in the

original data.

2.4.2 Velocity filtering

I apply a velocity filter that rejects drill-bit signal and noise, while passing only noise.
After a hyperbolic traveltime correction that aligns the direct arrivals from the drill-bit
source (as discussed on page 17), I reject events with dips between -0.2 s/km and 0.1 s/km.
The stopband is chosen so that drill-bit energy reflected at depths greater than the depth
of the well, or scattered at impedance contrasts along the borehole (Samec and Kostov,
1988) would also be rejected by the dip filter. Reflected drill-bit energy will have higher
apparent velocity than the direct arrivals from the drill bit, and the corresponding dips
will be negative after moveout correction. Conversely, scattering at shallower depths than

the depth of the drill bit will generate events with lower apparent velocity and positive
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FIG. 2.8. Results of median smoothing for the 6 control windows shown in Figure 2.3.
The data are displayed in the time-offset domain, after moveout correction that should
align direct arrivals from the drill bit along the offset axis. The strongest events are still
coherent noise at far offsets. Such noise has high apparent velocity, and is generated most

likely by sources off the plane of the array.
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dips.

The implementation of the dip filter consists of three steps: transformation to the
frequency-dip domain, setting to zero the energy in a range of dips, and inverse transform-
ing to the time-offset domain. The transforms between the time-offset and frequency-dip
domains are least-squares inverses of each other, as described in Appendix C. Figure 2.9
displays the data after the velocity filtering has removed events within the range of move-
outs expected for the drill-bit signal. The events in the passband of the velocity filter (that

is, the preliminary estimate of signal) are shown in Figure 2.10.

2.4.3 Attenuation of coherent noise by linear prediction

Linear prediction along the time axis

The strong narrowband noise, present in several control windows at far offsets (Figure 2.9)
affects a few adjacent traces and introduces sharp amplitude contrasts along offset. Be-
cause such noise is continuous along offset, it is not suppressed well by median filtering. On
the other hand, linear prediction along offset would smear the noise along offset. Therefore
I chose to suppress such noise by gapped linear prediction along the time axis (Peacock
and Treitel, 1969; Claerbout, 1989). In the gapped prediction-error model, the sample at
time (¢t + GAP) is predicted from L past samples at times {t,t — 1,...,t — L+ 1}:

divgap = aod: + ardi—1 +...+ap—1di_py1 + ng, (2.4)

where n; are the residuals or also prediction-errors, and {ao,a,...,ar-1} are the co-
efficients of a prediction-error filter of length L, determined so that the power of the

prediction-error is minimum.

The normal equations for the gapped prediction model (Equation 2.4) establish the

following relationship for the samples of the autocorrelation of the data pg(t) :
pa(GAP + 1) = aopa(r)+ ... + ap-1pa(r — L+ 1), (2.5)

where 7 ranges from 0 to L — 1.

Narrowband signal components have an autocorrelation that oscillates up to large lags,
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FIG. 2.9. Residuals of the velocity filtering, free from coherent events with moveout close
to the expected moveout from the drill-bit signal. The moveout correction applied to the
data before median smoothing (Figure 2.8) has been undone; therefore the moveout in

these data is comparable to the moveout in the original data (Figure 2.3).
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FIG. 2.10. Coherent events with moveout close to the expected moveout from the drill-bit
signal have been separated from the rest of the data by velocity filtering. The moveout
correction applied to the data before median smoothing (Figure 2.8) has been undone;
therefore the moveout in these data is comparable to the moveout in the original data

(Figure 2.3).
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and are predictable for large values of GAP. On the other hand, when the autocorrelation
of the data becomes zero for lags greater than G AP, the prediction-error filter becomes zero
also. Thus, the gapped-prediction filter has a “detection” feature; it acts as an adaptive

notch filter on some traces, while it leaves others unchanged.

In the current processing sequence, I computed independent prediction-error filters for
each trace in windows of data 8 s long; the length of the prediction-error filter was chosen
as 0.05 s, and the gap was 0.08 s. The choice of the gap was such that only narrowband
noise was predictable. The estimated noise is displayed in Figure 2.11; it appears indeed

narrowband, and affects groups of a few traces along offset.

Linear prediction along the offset axis

The steeply dipping events with linear moveout, readily apparent in the velocity-filtered
data (Figure 2.9), have not been estimated by the previous single-channel gapped predic-
tion (Figure 2.11). To estimate and suppress such spatially coherent events, I will follow

a method introduced by Canales (1984) and known as f-x smoothing.

In this method, the data are modeled as the superposition of plane waves and spatially

uncorrelated noise:
d(z,t) = Zf.-(s,-x - t) + n(z,t),
{

where z denotes offset, t denotes time, and, f;(t) and s; are the waveform and the apparent
slowness across the array of the #** plane wave. After a Fourier transform along the time
axis, each plane wave becomes a complex exponential, and the data are represented as the

sum of complex exponentials and noise,

d(z,w) = Y Aied“%® + n(z,w). (2.6)

13

A particular property holds for the above model when the noise term is zero and the data
are regularly sampled along offset; then there exists a linear filter such that any sample
is exactly predictable from past samples of the sequence. In other words, knowledge of
the data, or of the frequencies of the sinusoids in Equation 2.6, or of the coefficients of
the linear filter, are equivalent (Burg, 1975; Marple, 1987). The f-x smoothing method
estimates the predictable part of the data (sum of sinusoids) by applying Burg’s algorithm
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FIG. 2.11. The noise displayed in this figure is strong, narrowband, and present on groups
of adjacent traces. This noise is the part of the data in Figure 2.9, that is predictable by

gapped linear prediction along each trace.
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for unit-lag prediction.

I apply the f-x smoothing method to the residuals of the single-channel gapped pre-
diction (Figure 2.11), and also estimate the predictable part of the signal with Burg’s
algorithm. I choose Burg’s algorithm over other unit-lag prediction algorithms because
this algorithm makes no assumptions about the values of missing samples and is familiar
in surface seismic exploration (Claerbout, 1985a). Figure 2.12 displays the results of lin-
ear prediction along the offset axis; steeply dipping coherent noise is determined by this

prediction model in several control windows.

Attenuation of coherent noise

Subtraction of the estimated coherent noise (Figures 2.11 and 2.12) from the original
data (Figure 2.3) shows that the amplitudes of the noise have been under-estimated.
This under-estimation of amplitudes is a well known property of least-squares models; an
additional factor in the current processing method could be also the use of velocity filtering

to suppress the noise.

To compensate for the under-estimation of amplitudes and better subtract the coherent
noise from the data, I solve a small regression problem to determine the scalar gain factors

a and b that minimize the power of the residuals in the following model:
data(t,z) — a xnt(t,z) — bxnx(¢,z) ~ 0, 2.7

where t denotes time, z denotes offset, data refers to the original data (Figure 2.3), nt refers
to the estimated narrowband noise (Figure 2.11), and nx refers to the spatially correlated
noise (Figure 2.12). Because the coherent noise components nt and nx are estimated from
data which contain no drill-bit signal (data in the stop-band of the velocity filter), the
drill-bit signal in the data will be temporally uncorrelated with these noise components,

and therefore it will not be suppressed by the regression.

The results of the signal and noise separation are displayed in Figure 2.13, where
several hyperbolic events are now clearly apparent, while the noise patterns (Figures 2.11
and 2.12) have been suppressed. The final results (Figure 2.13) show that the spreading
of random and coherent noise has been reduced with respect to the preliminary estimate

of drill-bit signal obtained by velocity filtering (Figure 2.10); as a consequence the visual
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FIG. 2.12. The noise displayed in this figure consists mainly of steeply dipping events.
This noise is the part of the residuals from gapped linear interpolation (data in Figure 2.9
minus data in Figure 2.11) that is predictable by unit-lag linear prediction along along

offset.
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detection of coherent hyperbolic events is improved.

2.4.4 Signal-to-noise ratios

Synthetic data

To understand better why the signal and noise separation method improves the results
of velocity filtering, and when such an effect could be expected, I apply the processing

sequence described above to the synthetic data shown first in Figure 2.2.

On the synthetic data, I define the signal-to-noise ratio as the ratio between the power
of the signal (the two hyperbolas) and the power of the noise® (sum of broadband and
narrowband components). In both cases, the power is computed in a 1 s long window of
data. The results of processing data with a signal-to-noise ratio of -20 db are shown in
Figure 2.14. This computation confirms that the signal and noise separation algorithm
improves the results of the velocity filtering, mainly by reducing the smearing of random

and coherent noise.

The results of the processing for signal-to-noise ratios of -10 db, -20 db and -30 db are
shown in Figure 2.15; at -30 db the signal hyperbolas are barely visible. The improvement
over the results of preliminary velocity filtering (not shown here) are most important
around -20 db; for high signal-to-noise ratios the preliminary velocity filtering is sufficient,

while for low signal-to-noise ratio neither method enhances the hyperbolas well.

Signal-to-noise ratios from drill-bit data

On field data, the processing does not separate the data into drill-bit and noise; there-
fore the signal-to-noise ratios are better described as ratios between the power of the input
and the power of the output of the processing. The processing sequence has decreased the
power in each of the 6 control windows (Figure 2.13) by about 10 db with respect to the
raw data (Figure 2.3). Both smoothing and coherent noise filtering decrease the power by

about 5 db each.

SSNR(db) = 101log,o(Psignal/Proise)-
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FIG. 2.13. Results of the processing; several hyperbolic events are now apparent above

the background noise level.
These figures are obtained by subtraction of a linear combination of the estimated noise

(Figures 2.11 and 2.12) from the median smoothed data (Figure 2.8).
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FIG. 2.14. Results of signal and noise separation applied to synthetic data:

Top row: (from left to right) Input data, preliminary estimate of signal (passband of the
velocity filter), preliminary estimate of noise (stopband of velocity filter).

Bottom row: (from left to right) Estimate of coherent noise by prediction along the time
axis, estimate of the coherent noise by prediction along the offset axis, final estimate of
the signal and random noise.
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FIG. 2.15. Results of signal and noise separation for different signal-to-noise ratios (from
left to right) of -10 db, -20 db and -30 db.

2.5 Tests for the attenuation of coherent noise

In this section, I discuss three tests of the signal and noise separation method presented in
this chapter. The first test establishes a limit of validity of the processing: no hyperbolas
become apparent when the input data consist of spatially uncorrelated noise. The second
test compares amplitude spectra before and after the processing. The comparison illus-
trates some of the steps in the processing and provides a reference for the interpretation
of average velocity spectra in the next chapter. The third test computes dip spectra as a

function of offset, in order to check for residual coherent noise in the data.
Processing of spatially uncorrelated data

In the first test, I apply the processing sequence for the separation of signal and noise
to spatially uncorrelated data; these data are obtained from the first three control panels
(top row in Figure 2.8) by random permutation of the traces along offset. Figure 2.16
shows the results of the processing; no hyperbolas become apparent when the input data

are random.
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FIG. 2.16. No spatially coherent signal is apparent in the above panels, which represent
the signal estimated from spatially uncorrelated data. The input data are obtained by
random permutation of the traces in three of the control windows (top row of Figure 2.8).

Average amplitude spectra

The second test compares average amplitude spectra before processing for noise atten-
uation. I consider the data as a cube with coordinate axes offset, frequency (frequency
component in windows each 8 s long) and time; each of the spectra in Figure 2.17 is

obtained by averaging the amplitudes of the data along one of the coordinate axes.

The leftmost column in Figure 2.17 shows the amplitude spectra averaged over fre-
quency, as a function of time and offset. After processing the amplitudes appear uniform

along time and offset; such uniform amplitudes are required before averaging velocity
spectra over time.

The middle column in Figure 2.17 shows the amplitude spectra averaged over time, as a
function of frequency and offset. Processing has increased the smoothness of the spectrum,
eliminated a few traces with anomalous amplitude spectra, and increased somewhat the

higher frequencies with respect to the low frequencies.

The rightmost column in Figure 2.17 shows the amplitude spectra averaged over offset,

as a function of time and frequency. The effect of the adaptive notch filter (near 20 Hz) is
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clearly apparent. The variations of several other narrowband components can be tracked
over time; such narrowband components are due to noise from the engines on the drilling

platform.

Local dip spectra along offset

In this third test, I compare dip spectra computed as a function of offset before and
after noise attenuation. Figure 2.18 displays dip spectra computed from 10 min of data in
windows each 4 s long and 10 traces wide; the zero dip reference is the expected moveout
of the drill-bit signal, and the range of dips centered at zero dip is 1.4 s/km. Before
processing the energy appears uniformly distributed across the range of dips, whereas
after processing the energy remains as expected near zero dip. The spectra show little
variation as a function of the recording time, and thus indicate a good suppression of noise

over the whole volume of data.
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FIG. 2.17. The amplitude in the data is computed from 8 s long windows, as function of
frequency, offset, and time (or equivalently depth). The upper three panels are computed
before the processing is applied for signal and noise separation; the bottom three panels
are computed after the processing.

From left to right the panels display the averaged amplitudes:

Left: Spectra as function of offset and time, averaged over frequency.
Middle: Spectra as function of frequency and offset, averaged over time.
Right:  Spectra as function of frequency and time, averaged over offset.

Dark vertical lines indicate missing (zero) records. Large positive amplitudes are plotted
in white.
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FIG. 2.18. Each of the panels displays a local dip spectrum computed in windows of
10 traces each and for dips in the interval from —0.7 to 0.7 s/km, centered around the

expected moveout for the drill-bit signal (positive dips correspond to lower apparent ve-
locity).

Top: Dip spectra from median-smoothed data.

Bottom: Dip spectra computed after coherent noise attenuation has been done.
Dark vertical lines represent a boundary between spectra; dark horizontal lines extendin
across all spectra correspond to missing (zero) data; black squares (within white regions%

indicate amplitudes above the 98¢* percentile, that have been clipped.



