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ABSTRACT

The challenge in experiments using the drill bit as a seismic source is to separate the
weak drill-bit signal from noise generated by industrial activity near the well. In a new
seismic experiment, the ambient elastic field is recorded during the drilling of a well with a
multichannel array laid on the Earth’s surface. The novel concept is the dense sampling of
the acoustic wavefield in space, such that multichannel filtering could subsequently focus
and amplify the weak signal while suppressing noise. Focusing of the drill-bit signal is
possible because the drill-bit source acts as a vertical point force, and therefore the spatial
coherency (moveout) of the drill-bit signal is predictable when the depth of the well and

RMS seismic velocities are known.

Observations of field data recorded with a conventional 1-D seismic line during drilling
show that the strongest-amplitude events in the data are noise. I apply median smoothing
and iterative velocity filtering to attenuate noise whose moveout differs significantly from
the moveout expected from the drill-bit signal. After velocity filtering, the drill-bit signal
remains still weaker than events in the data with similar moveout across the 1-D seismic
line — background noise, which has a uniform velocity spectrum, or strong noise from a
source located at the surface. However, temporal cross-correlation of the velocity-filtered
data with a reference signal from a geophone located in a shallow borehole, separates the
signal and noise waveforms in time. Then, stacking velocity analysis of the cross-correlated
data reveals a coherent event whose traveltime delays are consistent with those expected

from the drill-bit signal.

From the analysis of these data, I obtained average traveltime delays through the
subsurface, as well as models for the ambient noise. Such traveltime delays, if determined

over a range of depths, could be used for time-to-depth conversion of surface seismic data
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or for tomographic reconstruction of velocities near the borehole. The strong sources
of noise observed in this first experiment suggest a 2-D acquisition geometry for future

experiments, so that more ambitious goals, such as imaging of reflectors, could be pursued.

I expect that the processing sequence developed for the analysis of these data will be
of interest also in other seismic experiments that deal with similar signal processing issues:
detection of weak sources in strong noise, estimation of traveltime delays for non-impulsive

signals, and accurate and efficient velocity filtering by linear transform methods.
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