255

Movies on the Macintosh II

Rick Ottoline

ABSTRACT

The Macintosh II computer was my first successful attempt to run seismic
movies with a mouse-window interface. Previously, the demands of high speed
graphics interfered with a responsive user interface. A mouse-window interface
does not seem better than the old keystroke interface, except for adjusting the
shape of the seismic image and interrogating the image.

INTRODUCTION

There are some data features that cannot be readily seen in data unless the data
is animated. Animation is the general term for high speed data browsing which also
includes magnifying, windowing, scrolling, rotating, warping, carving, overlays and
transparencies of two and three-dimensional data images.

Interactive control of display parameters is essential to high speed data browsing.
My first control interface was keystroke based. A single keystroke in most cases
changed the display. It was not easy to learn, but very efficient to get some display
state once you got the hang of it.

Affordable mouse-window color graphics became available after I had initially de-
veloped movies. Such a system promised a richer control interface than a keystroke
method. However, early graphics workstations were hampered by inadequate color
resolution (Macintosh I, Microvax II), slow graphics display (Microvax GPX, Apollo
DNG660) or interactive deadlock under high speed graphics requests (SunView, Sun
NeWS). The Macintosh II was the first workstation to meet my demands.

Goals of a data browser

My goals, in descending order of importance are:
¢ high speed, ile. animation;

SEP-59

Ottoling 256 Mac Il movie

¢ mouse-window control, i.e. cursor, menu, buttons, etc.;

e accomplish as much as possible by pointing at the image rather than through
indirect controls;

e arbitrary number of entities such as datasets, views, colorings;
e three, or more, dimensional raster volumes;

e arbitrary magnification and windowing;

e good labeling;

e printer-independent hardcopy.

Claerbout’s Balloon program (1988) emphasized labeling and printing because
he was interested in preparing report illustrations.

After a description of Macintosh movie, I shall discuss some implementation
details and future prospects.

TOUR OF MAC-II MOVIE

Sample display

Figure 1 shows an sample display. The four edge windows contain commands
that control the data windows in the interior. A few additional commands are called
by clicking parts of the data windows.

Along the top edge are the menu commands. These are listed in the appendix
table. The commands are categorized as:

e input data files and saved images | File |;

e documentation and display state information | Info |;

e axial and cursor-selected views [View |;

e animation loop control [Loop |;

e image rotations, shear, shape and size [Zoom, Rotate, Shear l;
e rendering as density or vector images, or audio [Render, Audio ;
e color and contrast | Color |;

e system requests [Apple, File |.

SEP-59

Ottolint 257 Mac II movie

€ File Info Uiew Rotate Zoom Shear Loop Render Color Audio Repair K
—[EJ=——= £LAsTIC MODEL =—=FF +ELASTIC MODEL -
N TIME=30 4 DEPTH=49

MIDPOINT MIDPOINT
- o 0 50 100 0 0 10 20 30 40 50 60 70 BO 90 100
-
o\
1 10
+
—|50 20 £
a9
2 00
EDEPTH 30 —i]
3
e IME
40
60

hColor Pallet

FIG. 1. Sample display of Macintosh II movie. Each of the four edge windows is a
control mechanism—top, menus; left, icon commands; right, adjustable color pallet;
bottom, message box.

SEP-59

Ottoliny 258 Mac II movie

Common commands are also accessible through icons along the left border or
keystroke equivalents. These are also listed in the appendix table.

Popup control panels allow fine-tuning. They are accessible from the menu ad-
just commands, e.g. Adjust View. A control panel integrates all of the commands
for a display object.

Commands operate on the currently active window, that with the darkened
titlebar. Windows are activated by clicking the mouse somewhere within them.

Some commands change the behavior of the mouse without immediately chang-
ing the display. Feedback is given by the cursor shape. These are summarized in
Table 1.

Table 1: Cursor Mode Changes

COMMAND MODE CURSOR
DEFAULT print coordinates of data arrow
VIEW Horz Select | select horizontal cross section | horizontal bar
VIEW Vert Select | select vertical cross section vertical bar
VIEW Box Select select rectangle of data Cross
AUDIO Horz Select | play horizontal trace horizontal bar & speaker
AUDIO Vert Select | play vertical trace vertical bar & speaker
AUDIO Box Select | play rectangle of data cross & speaker

Along the right edge is a color pallet. Dragging the mouse-cursor in the pallet
changes contrast.

Along the bottom edge is a message box. This gives redundant feedback, since
almost every command causes an immediate change in the graphical display.

Running Mac II movie

Clicking the movie program icon draws the control edges and a standard Mac-
intosh file selection box (Figure 2). Input data files are standard seplib format.
That is, a binary image file accompanied by a text description file. The selected
file is loaded and rendered as variable density. Then the data can be manipulated
through the movie commands.

An arbitrary number of datasets and dataset views can be displayed until one
runs out of screen space or core memory. New views grow out of the four screen
corners in clockwise order.

IMPLEMENTATION NOTES

Software development environment

Macintosh II Movie was programmed in C under the Macintosh Programmer’s
Workbench (MPW}) software development environment. The modular, object-oriented

SEP-59

Ottoling 259 Mac II movie

0 Bhole.H

[fractal.H

00(

LDpen...

FIG. 2. Macintosh movie startup screen. File selection panel automatically comes
up. Seplib parameter file names are displayed.

SEP-59

Ottolint 260 Mac II movie

methodology of Ottolini (1987) was used. This methodology (1) allows multiple
datasets, views, color tables, and (2) separates out machine-dependent code. Pro-
gram objects are summarized in Table 2.

Table 2: Movie Objects
Audio audio rendering
Axis data and screen axes
Color color tables
Command | menu, keystroke, & icon commands
Data seplib dataset
Loop film loop control
Main initialization and event loop
Message message window
Palet color pallet window
Render graphics rendering
Rotate view rotation
Select view part selection
Shear view shear
Simple object primitives
View data view
Zoom view size

Macintosh Objects

Control icon buttons
Cursor cursor shape
File file names
Screen screen

The disadvantages of this methodology are mainly logistic. Each object requires
a description file, code file and optional Macintosh resource file. Lots of files are
cumbersome and slow down program linking. These problems will go away as
Macintosh C language tools improve.

Color

Macintosh II color monitors act like standard monitors with 256-color lookup
tables. Operating system software also supports 1-bit, 4-bit and 24-bit (soon)
color monitors, although my software doesn’t. I compress the seismic data color-
continuum from 255 colors to 64 colors as data is read from disk because the oper-
ating system does not make all 256 hardware colors available.

Apple monitor crispness is the best I’ve seen in color. It is a pleasure to work
with such a display.

SEP-59

Ottolint 261 Mac II movie

Speed

The image display speed is as fast as any other 68020 CPU workstation on the
market (Ottolini, 1988). Apple recommends using a system routine [Copybits]
rather than write directly into video display memory. Though the system routine
solves several problems—rvariable color planes, screen clipping, multiple monitors,
and zoom—it is a order of magnitude slower.

The speed of the Macintosh in drawing user-interface objects—windows, menus,
icons—is the fastest I’ve seen. It is also a pleasure to work with.

Zoom

Image size control is a crucial part of browsing software from both an user
interface and implementation point of view.

The old graphics terminals had hardware zoom. This was important in filling
the screen when image transmission from the CPU was slow. However, hardware
zoom made text labels difficult, if not impossible, and resulted in cryptic displays.

My first attempts at software zoom imitated the hardware zoom pixel replication
algorithm. This allows integral zooms and sub-samplings. Various programming
tricks, such a unrolling-short-loops and byte-to-word table lookups, speed up zoom.
This took about fifty special purpose subroutines including combinations of positive,
negative, horizontal and vertical zooms.

Claerbout (1988) suggested a simpler method for arbitrary zoom. The above
method could be considered push-zoom and is analogous to Kirchoff migration by
smearing. Claerbout’s method is pull-zoom and is like diffraction summation. The
algorithm is to pre-compute a zoom interpolation vector, then convolve it with a
succession of data images. This algorithm works the same for positive and negative
zooms. One zoom vector is for the horizontal display axis and another for the
vertical axis. By applying a scale and bias to the interpolation vector, zooming can
be combined with clipping, cross sections, rotation and shearing.

The algorithm for computing the zoom interpolation vector is:

for each output point i {
index = (i * zoom_length * data_element_separation) / (data_length);

3

The convolution algorithm is:

data_base = first_column_element * column_element_separation +
first_row_element * row_element_separation;
for each ougput row j {

SEP-59

Ottolin: 262 Mac IT movie

row_base = data_base + row_index[j];

for each output column i {
image[i,j] = row_base[column_index[jl];
}

}

Using pointers for arrays, the inner loop requires three memory accesses and one
addition per output image point. The speed is linear with the size of the output
image. '

3-D zoom

The previous zoom algorithm solves the mechanics of three-dimensional cube
displays with arbitrary orientation and size, but not how to specify such. Earlier
versions of the movie program had twenty predefined cross section and cube orien-
tations. Windowing and zooming were done on the single panel cross sections and
“remembered” in the cube views.

Though not fully implemented at the time of this article, I envision the following
cubical windowing and zoom (Figure 3):

e The axes, shape, and bounds of the two-dimensional cross section forming the
front face of the cube is obtained with current commands.

e Cube side and top panels of arbitrary size are “grown” by grabbing one of the
corners of the front face (Figure 3a).

e The cube is reshaped by grabbing one of the square-angle corners (Figure 3b).

e The cross hairs, showing where within the volume each face comes from, are
adjustable (Figure 3c).

e Selection rectangles do windowing (Figure 3d).

One problem of three-dimensional specification is combinatorial—there are many
more orientation and shaping possibilities than for two-dimensions. Another prob-
lem is the ambiguity of specifying a three-dimensional operation on a two-dimensional
surface (Chen, et al, 1988). Often there are two or more possible actions for a cer-
tain mouse behavior. In other words: there is a +2 and —z solution to the behavior
equations for a given (z,y) input.

Memory

The Macintosh operating system does not support virtual memory. This lim-
its movie dataset sizes to core memory size minus operating system and program
overhead. This burdens the programmer with memory management.

}

SEP-59

Ottoling 263 Mac II movie
(a) b
a ¢ (b)
/ & 7 T
/ |
(|
| /
| /
| 7 /
 _ _ _
Vs
(c) (d)
L7
-

i

FIG. 3. Scheme for specifying size and orientation of three-dimensional image: (a)
shape, (b) size, (c) frame intersections, (d) windowing.

SEP-59

Ottoliny 264 Mac II movie

Another problem is program size restrictions. A segment of compiled code must
be less than 32KB (16-bit address limit). Also, the number of linkages between
segments is limited to four thousand.

DISCUSSION

Merits of the mouse-window interface

It took some time to perfect the keystroke movie interface. One wishes to get
rapidly to any possible display state without too much work. There are very few
multiple keystroke commands (until we started running of keys). Too many choices
is as bad as too few. We dropped the joystick controlled commands, much of the
color flexibility, and most of the possible cube views for that reason.

We are on a similar learning curve for mouse-window interfaces. I generally don’t
like menu commands because they less accessible than icons or keystrokes. However,
there is not enough icon display space or keys to replace all menu commands.
People find keystrokes harder to learn than menus and icons. But keystrokes are
more efficient when giving a lecture and controlling the screen simultaneously. The
mouse is nice for adjusting window shape and selecting parts of the window contents.
However, the mouse is tedious to move it across a large screen to reach the menus
and icons.

Special features of the Macintosh

The graphics is fast. The monitor is crisp. The menubar is tedious on a large
screen. Better automatic memory management is needed for large programs and
datasets. The graphics software is a mixed bag. It has all the functions, not an
uniform syntax. It is proprietary, so learning to program the Macintosh is like
reinventing-the-wheel. A source-code level debugger is needed to track down bugs.
It is hard to get data in and out of the Mac. Ethernet hardware exists, though
file transfer software is primitive. The better integrated AppleTalk is much slower.
Floppy disks are too small to move much data.

Future work

Future work involves solving three-dimensional user interface issues. Lessons
learned on the Macintosh should be integrated into Sun and Raster Tech movie
programs. We should decide whether to move our other interactive graphics software
to the Macintosh.

REFERENCES

Chen, M., Mountford, S.J., and Sellen, A., 1988, A study in interactive 3-D rotation
using 2-D control devices: Computer Graphics, 22, 4, 121-130.

SEP-59

Ottolins

Claerbout, J.F., 1988, The ball

Ottolini, R., 1987, Techniques
51, 421.

265

oon program: SEP-57, 549.

for organizing interactive graphics programs: SEP-

Ottolini, R., 1988, SEP workstation update: SEP-57, 579.

APPENDIX: Movie Commands

Movie Commands

NAME

KEY ICON

File

Open ...

Close

Quit

Open As .

Save As SEPLIB
Save As VPLOT

Info

This Data
This Loop
This Window

Horz Axis horizontal line
Vert Axis vertical line
Loop Axis box

This Color

About Movie .
Window Icons
Mouse in Pallet

View
Front 1
Side 2
Top 3

Horz Select ...
Vert Select ...
Box Select ...
View Adjust ...

SEP-59

Mac IT movie

Ottolint

266

Movie Commands, cont.

NAME KEY ICON
Rotate
Original u
Left h bent left arrow
Right 1 bent right arrow
Horz h
Vert \4
Zoom
Original Z window zoom box
Maximum Z window zoom box
Square =
Horz Shrink X
Horz Expand X
Vert Shrink y
Vert Expand Y
Zoom Adjust window grow box
Shear
None
Left
Right
Up
Down
Loop
Forward f right arrow
Reverse r left arrow
BothWays b double arrow
Stop 0] stop sign
First 1 1
Step Forward n +
Step Backwards m -
Slower s tortoise
Faster S rabbit

Delay 0.0 sec
Delay 0.1 sec
Delay 0.2 sec
Delay 0.5 sec
Delay 1.0 sec
Delay 2.0 sec

Loop Adjust ...

SEP-59

Mac IT movie

Ottoling

267

Movie Commands, cont.

NAME KEY ICON
Render

Density D density icon

Variable Area \'% variable area

Positive Area P positive area

Wiggle w wiggle lines

TimeLine T three horizontal lines

Labels L one two three four
Color

Gray I

Clip C

Half H

Flag F

Blue B

Multi M

File U

Adjust Contrast color pallet
Audio

Horz Select ...
Vert Select ...
Box Select ...
Audio Adjust ...

horizontal line
vertical line
box

Repair

Active View
Icon Bar

Color Pallet
All Windows

SEP-59

Mac II movie

DATA VOLUME
268 :

SURFACE SCULPTURE TRANSPARENCY
PROJECT SLICE SLICE INTEGRATE CLOUDS

°°8°3°
L] °o
/ ooc:gogo‘

SEGMENT
_,59’?

GROW SEGMENT MULTI-RESOLUTION

y AL 4

L/

