223

A user interface manager : SepView

Jean-Claude Dulac

ABSTRACT

I wrote a software package called SepView that allows control of existing
processing programs with graphical user interfaces. The design of these user
interfaces and their management requires no programming: an ascii descriptive
file specifies for each program, the interface. Changes to the interface output
style and behavior are accomplished merely by editing this file. SepView is
modular: new user-specified objects can be described in this file in addition to
standard interactive objects, such as menus, buttons. SepView is also an object-
oriented library which presents an object-oriented model to the programmer to
simplify the creation of new objects and new interactive programs. Beyond
its immediate application to the SEP computing library “seplib”, SepView is
an interesting example of programming and structuring user interfaces for seis-
mic processing. SepView is already used to write an editor which provides a
graphical programming environment for seismic data processing.

INTRODUCTION

The SEP library is a tool-based seismic data processing system (Claerbout, 1986).
A tool is a particular canonical computer program of this system. A model “seplib”
process reads an input history file, writes an updated output history file by append-
ing processing information and by overriding default parameters, and then processes
the data cube. The consistency of such data description (‘nl1’,‘n2’n3’,...: cube
parameters) and processing programs allows the “seplib” user to string several pro-
cesses together end-to-end with a UNIX pipe. A task is such a chain of processing
programs. The command language provides efficient access to the data-cubes struc-
ture of the system. In general, an experienced user can use the tools efficiently. A
problem arises, however, as soon as a user has to deal with a task for whose he lacks
details about appropriate tools. This situation does applies both to the novice and
the expert. In a complex task environment, only a few tools are used frequently and

SEP-59

Dulac 224 Sep View

Input }:>Tool }}w >>Output

FIG. 1. Pipé and redirection of I/O in UNIX: graphical representation

easely. Possible improvements of the dialogue interface are to make “seplib” more
communicative and to enlarge the concept of tool history, as well as tool graphi-
cal control to task history and task graphical control. Believing that a graphical
interface would improve the dialogue system, I began coding an advanced window
system that consists of a bit-mapped display with mouse device, keyboard, menus,
graphic and full screen capabilities. This window system is called SepView. In this
window system, important processing features of “seplib”, such as the pipe and
redirection of I/O in UNIX, are visualized to achieve an useful interface. (Figures 1

and 2)

I will first present a review of user interface models, and then, introduce the main
features of SepView before presenting an example and explaining some concepts I
used in SepView.

BACKGROUND IN USER INTERFACES

According to Hoffman & Valder (1986), the definition of a user interface can be
made in four steps (Figure 3):

1. An input/output model will describe how the user input and system output
is presented on a screen.

2. A dialogue model then will describe the rules of the dialogue between the
system and the user. Two aspects of the dialogue interface can be identified:

(a) the way in which a user is guided by the system to enter commands, for
example, with menu selection or system prompts.

(b) the rules of the dialogue interface defining the amount of control the user
has over the interface, i.e., how to start and stop a task or how to get
on-line help.

3. A tool interface model next describes the rules which define access to underly-
ing system tools. Possible improvement of the tool interface can be achieved
by providing:

(a) Knowledge about the task domain: strategies, methods, experience avail-
able, warning and suggestions for certain situations.

(b) Knowledge about the objects which may be applied in a solution: infor-
mation ;about the objects, the tools, and the task,

SEP-59

Dulac 225 Sep View

Tonl Editeor

Please Select One Tool on the menu

| Migration Nmo-Dmo Ray-Tracing Filters Plot

Move Tool
[Append New Tool |
Insert New Tool
Delete A Tool
Move Task
Create New Task Auxiliarg=>
Delete A Task Edit =>
Create A Loop | Display =>

Delete A Loop H

elp
Create A If Bloci Example 2
Wavelet
Delete A If Block

fbol Comménd Ed

Contour

g

itin
command; |Wavelet n1=1024 nt=0.004000 domain=time type=ricker0 fund=40 fhigh=60 flow=10

Wavelet
Wavelet generation pregram wsually used for modeling pregrams

number of sample: ntznis
sampling rate : 0.004000 dt

fundamental frequency:
n i Bo] 1o i Fa 100
ow = — fhigh = —

FIG. 2. Tool Editor : SepView provides a tool editor to build a particular task
graphically. Each program is associated with a particular user interface, and can be
manipulated by the tool editor. This figure presents an aspect of a particular session
with the tool editor. Two tasks have been built (upper figure), and a particular tool
(Wavelet) from the lower task is being edited (lower figures) to define its parameters.

i
¢

7

SEP-59

Dulac 226 Sep View

| User
Input/Output I\

-1 —
-

| | Dialog

—

Interactive Interface

-

Tool |

-

| Task |

[UNIX |

FIG. 3. User Interface Model according to Hoffman & Walder (1986)

(c) Knowleged about the component of the task: tools, objects, sub-task.

4. Last, an organizational interface model will comprise an attempt to describe
relations between different tasks executed by different users.

According to Hendler (1987), interface design is more complicated than just
putting up the windows on the screen. One technology proposed for helping de-
signers cope with ever-increasing demands on their systems is User Interface Man-
agement Systems (UIMS). This method advocates creating tools which allow the
designer to define the interface in a declarative way, usually via some special lan-
guages features. This form of interaction allows the designer of the interface to
experiment with different forms more easily.

Many systems have already borrowed these ideas. One of these, and perhaps
the best-known, is HyperCard™ (Goodman, 1987), used to design applications on
the Macintosh™. In HyperCard, the card or window is drawn using a special
editor. The card is then inserted into a stack which represents the way the user
goes through the application. The card and its elements are saved in a description
file. Operations described in a script can be associated with interactive objects.

SEPVIEW

SepView is a user interface manager defined on top of the SEP library. SepView
provides the components for the design and the control of a tool’s interface (Fig-
ure 4). Each tool is represented by a set of interconnected windows where the user
enters data. Theses control panels are described in a file. The interface is com-
pletely separated from the program, so that no recoding of the tool needs to be
done to create a specific interface for this program. Changes to the interface are
quick and easy and accomplished merely by editing the data file. No recomptlation
is required. SepView also provides the means to write and design any other kind

/
SEP-59

Dulac 227 Sep View

. Descriptive ;
management file

p
RN
NNV

Icommand
I

User
Interface

parameters |
|

FIG. 4. User Interface Tool model: A tool program is associated with a graph-
ical user interface described into a file. SepView reads this data file of interactive
objects specifications and produces the user interface. The tool program does not
manage the interface. After the interactive parameters acquisition, SepView exe-
cutes the tool giving the defined parameters as command arguments.

of graphical user interface (Figure 5). SepView combines an application code and
a user interface description to produce a complete application. The separation of
interactive behavior and output aspect, as well as the separation of the interactive
behavior and the abstract behavior (suiting a particular application), is enhanced
by SepView and simplifies the code development and the code maintenance.

Main features of SepView

All interactive objects or interactors, which are the forms coming up on the
screen, are designed in a descriptive file using a high-level language. Descriptive
attributes for each object, can be specified, such as, text style or panel architecture.
The “look” of the interface can be modified by substituing some attributes or some
interactors into the description file. The “behavior” of the interactive objects is also
described into a descriptive file. I use two concepts introduced by HyperCard to
describe the dynamic part of the interactive object: Navigation and Script.

e In HyperCard, the navigation description is comparable to a goto. In SepView,
navigation is described as a production rule (if...then). For example, the
navigation rule allows the user to tell a particular object what is going to hap-
pen when the right mouse button is clicked on it, or when it is selected. The
navigation rules allow linking the different scenes in a dialogue chain. This
approach is more flexible than a programming one, and simplifies checking of
the program flow and the specifications.

;f
SEP-59

Dulac 228 Sep View

properties - . hle

’7

design VRN ‘s

User
Interface

Program-Self
management

Object-Self
management

FIG. 5. User Interface Interactive model: An interactive program can use
SepView to describe its own objects and design parameters. Management of the
interface is shared by SepView and the interactive program.

¢ Run-time operations are described into a procedure called a script. For ex-
ample, a script allows to initialize some interactors dynamically, to change at
run-time the design of the screen, to compute data during an acquisition, to
check input, and to communicate with the user program. The scripts are asso-
ciated with all interactors. To write these script procedures, I have designed a
language called C* (because it resembles C). I have added some new features
to enable an easy interaction with the interface objects. (In HyperCard the
script is written in a special language).

Implementation

SepView itself is written in C++ (Stroustrup, 1986), an object-oriented lan-
guage. The object-oriented approach was necessary in the context of interactive
objects manipulation. The interpretation of the descriptive file is made with a
parser generated by “yacc” (Yet Another Compiler-Compiler)(UNIX) and an lex-
ical analyzer generated by “lex” (A Lexical Analyzer Generator)(UNIX). For the
implementation (Figure 6), I have used a C++ library called InterViews (Linton &
Calder, 1987). InterViews is written on top of the X window library (Scheifler &
Gettys, 1986) and provides the basic user interface package (Dulac, Nichols & Van
Trier, 1988).

SEP-59

Dulac 229 Sep View

: | Interactive program ! | —:
! | SepView ' | :_ Mo
| | T
" i InterViews I |
[— 1 —X _v:/indow s:/sten: —]

FIG. 6. SepView Implementation: SepView is written using InterViews which
runs on top of the X window system. An interactive program can use both SepView
and InterViews.

SCRUTINY OF SEPVIEW

An example of the most important feature of SepView - declaration of the inter-
active objects “look” and “feel” - is presented first. The next sections explain the
interactive objects, script, navigation, and tool specifications used in the example
descriptive file. I then describe the task concept - how its graphical representation
presented in Figure 2 must be read. Finally, I explain how SepView accepts new
interactive objects specifications.

Example

Figure 8 shows a complex control panel, which is defined in the ascii file presented
in Figure 7. This description contains a tool declaration, a control script, and many
interactor specifications.

Interactive objects

The interactive objects are divided into two parts: the simple interactors, and
the composite interactors or scenes. The different interactors are derived from
InterViews basic interactors. (Figure 9 and Appendix A)

The basic interactor class defines a general interactor object from which all other
objects are derived. All interactors maintain an output state and an input value.
All interactors implement a set of operations defined in the generic interactor class.
These include operations for

e reading its attached description;

e setting its output state;

setting, checking and retrieving its values;

and evaluating itself. An evaluation of a scene is its display on the screen and
its interactive manipulation.

SEP-59

Dulac 230
% extern card Wavelet ;
% static menufield Domain, WaveletType ;
% static field samples , samprate, fund ;
% static slider flow, fhigh ;
Wavelet :
loc = 400,400 ; font = "timromi2b" ; title = "",6"Wavelet","" ;
tool(name = "/usr/local/Wavelet" ;
type = frontend ;
synopsys = "Wavelet Generation for modeling program" ;
parameters = "ni" = $samples, "nt" = $samprate,
"domain® = $Domain , "type" = $WaveletType ,
"fund" = $fund , "fhigh" = $fhigh,
; “flow" = $flovw ;
endScript = { if(!$n1) {
error("ni has to be defined") ; return(0) ;
} else if($n1 < 0) {
error("nl has to be positive") ; return(0) ;
return(1) ;
%% [x==-==- ARCHITECTURE OF THE CARD ----------- */

%
samples

samprat
fund :
flow :

thigh :

Domain
Wavelet

{ \bf Wavelet generation program usually used for modeling programs }

number of sample: [samples] nt=ni=
sampling rate : [samprate] dt
Domain : [Domain]

Wavelet Type : [WaveletType]

fundamental frequency: [fund]

flow = [flow] thigh = [fhigh]
[¥mmmm e OBJECTS DESCRIPTION ------==-==- */
: = 1024 ; // default value

help = "Please give the number of samples" ;

e : = 0.004 ; help = "Please give the sample rate" ;

= 40 ; help = "fundamental frequency of ricker wavelet" ;

= 10 ; fvalue = 1 ; lvalue = 100 ; svalue = 1. ;
help = "low cutoff frequency or butterworth filter" ;

= 60 ; fvalue = 1 ; lvalue = 100 ; svalue = 1. ;
help = "high cutoff frequency or butterworth filter" ;

: = "time" , "ctime", "frequency", "spectrum" ;

Sep View

Type : = "rickerO", "rickeri", "ricker2", "“spike","bandpass", "data",b"zero";

FIG. 7. Wavelet Description File: Here is an example of a card description

file. Interactors as field, slider, menufield are defined and mapped into this card
according to the architecture which is the “vi” representation of the card. The
interactors are surrounded by [’ ;’ if they are fields, or surrounded by ’<’ >’

otherwise. All the interactors use

in a file must be declared. An object can be

declared as static, extern or automatic. The associated tool is also described.

SEP-59

Dulac

231 Sep View

Wavelet generation pregram usually used for modeling programs

number of sample: ::ztz:g ntznis
sampling rate @ ri‘;‘:::" dt
Domain [time J bandpass

Wavelet Type |Et__a: ::::

fundamental frequency:

flow = & g6l 100 fhigh = @

FIG. 8. Wavelet Card. This window is the result of the interpretation of the
description file.

——_J Walking

Menu Field : |

Slider :

Text Edit:

& Check Button

. Button .|
activate a
list

List

FIG. 9. Interactors and graphical representation. The basic interactors pro-
vided by SepView appear here: button, field, panel, list and menu.

SEP-59

Dulac 232 Sep View

All objects have a text style property which corresponds to the font in which they
will be displayed. All objects have an associated help string. The (object-oriented)
help for an interactor is a short sentence describing the object and its purpose
(e.g. “apropos” command). The scene has a more sophisticated help object. This
documentation gives a general information about the tool (i.e. like that provided
by the UNIX “man” command). All interactors have an initial value that can be
constant or run time evaluated. All have the capacity to be visible or unuvisible at a
particular instant. All have a location which is implicit for the interactors (deduced
from the panel description), or explicit for the scene objects. All objects have the
capacity of copying their properties from another element of the same type already
described.

Script

The script, communication procedure between a program and its interface, al-
lows to perform run time operations. Each interactor has three scripts: one to
initialize, another to handle certain operations during the manipulation of the in-
teractor (such as when the user is moving a slider), and finally one to perform some
operations at the end of the manipulation.

e A script is surrounded by ’{’ and ’}’. A script is written using a C-like syntax,
called C*. All classical instructions (if, for, while, switch, return,...),
classical type (int, float, char %, ...),classical operators (+ /, ==, >=,
...) and expressions are available.

e To allow the script to manipulate the interactive objects value, two features
are added to C*:

— The interactor variable value may be changed by using the set keyword:
The following instruction set the interactor variable to a C* variable: set
InteractorVariable = C*Variable.

— The following metasequence is provided for introducing interactor vari-
able values into the C* script: $InteractorVariable is replaced by the
value of the variable and is used as a C* constant.

Example :

% Field A ; // declare field A.

{int i ; // declare § as an integer.
if($A > 0) { ...} // evaluate the field A and test it’s value.
set A =i ; // set the field A value to i.

} /] end of the script.

e To dialogue with the interactive program, in any C* block, it is possible to
call externa] functions fully written in C and compiled:

SEP-59

Dulac 233 Sep View

— It can be built-in-functions such as sqrt, printf, ...

— but also function such as delete(AnInteractor), add(AnInteractor),
or error(’’..."") which are built-in-functions associated with the user

interface manager.
— They can be user precompiled functions.

e To use or initialize data of the program, it is also possible to use predefined
user data types.

The use of extern functions and user data types allows communication with the
underlying program.

Navigation

The navigation part of an object allows the programmer to link scenes to one
another dynamically. The navigation is a list of rules. A rule’s syntax is the
production rule syntax :

condition => consequence |,

meaning that if the condition is true, then execute the left part. The premise
can be a script or a interactor. The consequence is a scene or a script. The
premise and the consequence can be a list of premises or consequences such as
P1 && P2 || P3 && 'P4:

[B && { return($F > 0); } = NextCard ;|
< RightMouse = HelpMenu ;>.

A navigation surrounded by ’[’ and ’]’ is executed when the object is activated. The
other one surrounded by ’<’ and ’>’ is activated when the object is manipulated.
The right premise must be a premise describing an event. With left premises it
is possible to associate an error message displayed if the left premis is false. A
help message can be associated with a consequence, and will be displayed when the
consequence is evaluated. Four special consequences, Quit, Next, Prev, and Skip
are predefined. Quit implies an exit of the User Interface. Next, Prev and Skip
allow one to manipulate the scene execution stack.

Navigation rules allow linking the different scenes in a dialogue chain. These
rules may be used by the User Interface Manager to present the application in a
command mode, in a stack mode, or in a tree mode, according to the user. These
capacities allow one to go from a linear User Interface to a parallel one. This is one
of the main ideas behind SepView. Navigation rules and script present easy ways
to achieve the dialogue model.

J
SEP-59

Dulac 234 Sep View

Tool

A tool is the basic processing program that the user wants to execute. A tool
description links a program tool with a set of windows. Then, a tool is described
with its parameters, its auxiliary input and output files, its history input and output
parameters. Figure 7 provides an example.

Tool parameters are described using two values: their names and the corre-
sponding interactor. The default value is taken from the interface description and
used to present a short version of the command (only the modified parameters)
to the user, to allow him to edit quickly this command in a history substitution
operation. This description allows the user interface manager to check the syntax
of the command and eventually help the user type in a normal command session.

Associated with a tool, some context information can be provided, such as :

e A mail box to give the status of the tool, (information about whether the tool
is running in the background or has already finished, and what time it has
already consumed, etc.);

e An icon representation;
e A way to compute the time of the command (significant parameters);
e Examples of use;

e Links with other tools to propose to the user possible dialogue continuations
and to find wrong use.

e Kind of tasks for which this tool is appropriate.

The tool description provides a standard scheme for describing the execution of a
tool. The associated environment is one advantage of SepView.

Task

A task is a chain of at least one tool that is combined into a processing procedure.
A task is itself a tool, then it has the same attributes than a tool (history files,
parameters, icon, ...). The simplest task procedure combines tools using UNIX
pipes. The procedure can also include loop statements or “if” statements. Graphic
representation of a task is represented in Figure 10. This little program specifies
flow of control and data. When a set of tools is surrounded by a loop-box, they will
be executed until the loop is finished. Tools included into an “if” block will not
be executed if the condition is false. To make the execution possible, intermediate
history files may be generated automatically. The task execution is controlled by a
description of the interdependency of the tools. This dependency can influence and
can be influenced by a tool’s parameter. When this happens, the user is asked for

]

SEP-59

Dulac 235 Sep View

FIG. 10. Task graphical representation: The input itself is a task. Two tools
are included into a loop. A tool auxiliary input is a file. Another tool has a task
as auxiliary output. This task will be executed if the condition associated with the
“if” block in which it is included is true. The output of the global task is a simple

history file.

the parameters. As in UNIX’s “make”, tools are not executed if the standard or
auxiliary input has not been modified.

A particular control panel can be associated with a task, allowing the user to
define a particular interface with predefined parameters, computed parameters and
interactive parameters. The user can then create his own tools using existing ones.
The task is a self-contained, executable module which may be operated interac-
tively from its front panel, or programmably by using it into an another task of
higher level. The result is a construction environment in which the user can rapidly
combine, interchange, and share modules with other users to build custom applica-
tions. Task is a central concept underlying SepView. SepView users may develop
applications by building tasks which perform various functions and are combined
to build applications.

Classes

SepView provides many pre-defined classes of interactors, but each application
should be able to describe its own interactive objects. New interactor classes can
be recognized by the interpreter by simply declaring their names and parameters
into the description file. This class description gives extendibility to SepView.

Borrowing the concept of class in C++, a new user-defined type (called class
like in C++) can be declared this way:

class new [Id] : public old {

}

SEP-59

Dulac 236 Sep View

The Id is the class identifier used in the construction of the new class. The inheri-
tance mechanism is also available. In the example above, class new is derived from

a class old.

Definition of a user-specified type requires the specification of the data needed
to represent an object of the type and a set of operations for manipulating such
an object. The type can be a pre-defined type such as int, float, string,
boolean or a user-type. A data element may have more than one type. Derived
types as vector are also available. An example of the declaration of the class iactor
and of the class menu derived from scene follows:

class iactor [101] {

string help ; // help string
int, term loc[2] = userRelative, eventRelative ; // location
int dim[2] ; // dimension
string, iactor font ; // text style
boolean visible ; // visibility flag
script preScript, coScript, endScript ; // operations
Help() ; // Help functionality
}
class item[121] ; // pre-declaration

class menu : public scene {
term type = popup , pulldown, menubar, choice ; // type
item ; // item declaration

An operation specification can be set into a navigation rules in the consequence
part, or into a script. During the navigation or script execution these operations
can then be executed. An example of such function utilization follows:

% menu HelpLDataMenu ;

HelpLDataMenu : font="timromi2b" ;
item(icon="Help" ; [=> iactor.Help() ; 1) ;

// 1f this item is selected then the Help functionality of the current interactor is called.

item(icon="List Data" ; [=> field.ListData() ;]) ;

// If this item is selected then the ListData functionality of the current field is called.

At compilation type, type-checking is done. At run-time, a check is made if the
function can be properly evaluated: if not, the interactor is invalidated.

The generic object from a class allows the user to predefine some attributes or
some behaviors for all objects of this class. The generic is described as another
object, but its associated values or behavior will be copied into new objects. Such
generic declaration can be made into a root file. In the root file, standard objects
can also be defined (Figure 11). This standardization is very helpful for the user.
Only one representation of a concept needs to be memorized, and not the difference
between “display”, “show”, and “list” which are different syntactic words for a same
category of action.

SEP-59

Dulac 237 Sep View

[k== DEFAULT CONTROL MENU -------- x/
% menu ExitConfirmMenu, HelpMenu, HelpLDataMenu ;

ExitConfirmMenu : font = "timromi2b" ;
item(icon = "Really Exit" ; [/* nothing */ => Exit ;]);

item(icon = “No Exit" ;)

HelpMenu : font = "timromi2b" ;
item(icon = "Help" ; [/* nothing %/ => iactor.Help() ;]);

/%---- GENERIC CLASSES ----- */

generic button : type = push ; < RightMouse => HelpMenu ; >
// the default type button will be a push button.
// A clik on the right mouse on the button will pop up the HelpMenu.

generic field : type = string ; < RightMouse => HelpLDataMenu ; >
gize = 20 ;
// the default type field will be a string of lenght 20.
// A clik on the right mouse on the field will pop up the HelpLDataMenu.

FIG. 11. Root File: An example of a root file that defines default control menus
and defines two generics. Class declaration can be made into the root file.

STAGE OF COMPLETION

SepView converts getpar into control panel and pipes into graphical networks.
Control panels are very hard to write in SunView and the Mac ToolBox. SepView
emulates HyperCard in making it much easier to write control panels.

In its current state, SepView provides the elements to create tools user interface
and interactive interface. Presently, the task editor allows one only to create a task
and run it: all the history recovery and substitution has to be written. A resource
editor to edit the interactive object description (like the Macintosh one) has to
be written. A general improvement of the help system merging text and graphics
has to be made. The current version of SepView does not implement completely
the tool model. The user is not supported when he does not know the name of
the right tool. I have to find how to collect and provide information about how
to work on a specified task, offering the necessary tools and objects for the work.
The current implementation does not provide an organizational environment, or
information about the system state. The main changes will occur when the new
version of C++ becomes available (Stroustrup, 1987). The current implementation
will be improved and cleaned up.

Using C++ as the implementation language for SepView has had several ben-
efits. Intrinsic to object-oriented language are facilities for data hiding and pro-
tection, extensibility and code sharing through inheritance, as well as flexibility
through run time binding of operations to objects. Class inheritance and “virtual”
functions simplify the structure of code and data, making the implementation easier
to debug and understand. Much of the complexity is in the primitive classes, hidden
from user interface designers. C++ is also very portable. A significant advantage

SEP-59

Dulac 238 Sep View

of using C++ for SepView was that there was a good match between the language
and the software. It was much easier to implement an object-oriented user interface
package using an object-oriented language than it would have been with a proce-
dural language. Classes define objects that model closely real objects and concepts
the system is meant to manage. The programmer focuses on the objects that are
manipulated, not on the flow of control. It is important to concentrate on the pro-
tocols for communication between objects. If these protocols are well-designed, the
implementation is relatively straightforward.

REFERENCES
Claerbout, J.F., 1986, Canonical program library: SEP-50, 281-289.

Dulac J.C., Nichols D., and Van Trier J., 1988, An introduction to InterViews:
SEP-59.

Goodman, D., 1987, The complete HyperCard handbook: Bantam Computer Books.

Hendler, J., and Lewis, C., 1987, Introduction: desigining interfaces for expert
systems: 1n Hendler, J.A., Ed., Expert systems: the user interface: Ablex Publ.
Co., 153-182.

Hoffman, C. and Valder W., 1986, Command language ergonomics: sn Hopper,
K. and Newman, I.A., Eds., Foundation for human-computer communication:
Elsevier Science Publisher B.V., 218-232.

Linton, M., and Calder, P., 1987, The design and implementation of InterViews: in
Proceedings of the USENIX C++4 Workshop, Santa Fe, NM, 256-267.

Scheifler, R.W., and Gettys, J., 1986, The X window system: ACM 54, No 2.,
79-109.

Stroustrup, B., 1986, The C+4+ programming language: Addison-Wesley Publ. Co..

Stroustrup, B., 1987, The evolution of C++: 1985 to 1987: tn Proceedings of the
USENIX C++ Workshop, Santa Fe, NM, 1-21.

APPENDIX A : INTERACTORS

SepView provides differents type of interactors divided into scenes and simple
interactors which are listed below:

Interactors: there are five types of basic interactors:

Buttons: Buttons can be of three types :
Push Button: One time selected.
Radio Button: Many times selected and unselected.
Check Box: Switch between selected and previous value.

Buttons could be configured in three different ways. They could be
independent. They could share a same status, in a such way that one

SEP-59

Dulac 239 Sep View

and only one of this list can be selected at a given time. Buttons can be
build hierarchically, in such way that if the main button is not selected
the other buttons are invalid.

Fields: A field allows the user to enter a value. The size will determine the
maximum number of characters the user can input in the field. There are
three types of field depending on the type of input value. These types
are integer, real, and character. In an integer field, only digits, -’ ’+’ are
accepted. In a real field, no letters are allowed except E or e. Help can
be provided using a dynamic list of values which can fill the field. This
list is set by the listdata attribute.

Display Fields: They display a value at a given location. The inside value
can be set by the application but not directly by the user.

Menu Fields: Fields which can take their value only among a certain set
of values. These values will be presented with a pop-up menu and the
selected value will be put in the associate list field.

Multi Line Fields: Fields which allow multiline input. Scrollbar and pan-
ner will permit scanning through the text.

Sliders: Select a continuum value between two extremes using a cursor.
Scenes: Five basic types of scene exist:

Cards or Panels: A card is a scene, and has different interactors mapped
according to the card’s architecture. Its behavior is determined by its
script or by the script of its components.

Menu: A pop-up menu displays many items and selects an item based on
the position of the pointing device. Items are arranged vertically on a
box. A ’=’ in the left of a item means that more options are available.
These options are displayed when the pointing device points to the '=’.
An item can be valid or not. It is always displayed in gray, and is not
selectable if invalid.

List: A list is like a menu, but if all the components of the list cannot be
displayed on the screen, a scroll bar is used to provide access to all
components. One element or several can be selected.

Table: a table is an array of fields in which each column represents a vector
of data. Some editing operations such as delete, copy and move, can be
performed on the rows of the table.

Graphic: A graphic scene is an interactor in which a graphic is displayed to
be edited using user functions.

SEP-59

pale

240

Inf25]:=
Plot3D]

Re[l/(x+I y)]
{x,-1,1}
’ {Yr _111}
,PlotPoints->30
;PlotRange->{-3, 3}
,ViewPoint->{-2,-4,1.15}
,BoxRatios->{2,2,1}
1

Out[25]=
-SurfaceGraphics-

