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A new Jacobian for dip-moveout

Lin Zhang

ABSTRACT

It is well known that the dip-moveout correction removes reflector point
dispersal from prestack data. A new derivation of the DMO operator shows
this fact explicitly. The impulse response of the new operator has an amplitude
response that is qualitatively consistent with wave theory. Synthetic results
show that after stacking, the new DMO-corrected data tends to have more
uniform amplitudes for events of varying dips.

INTRODUCTION

Dip-moveout is an effective post-NMO process when dipping events are present.
Deregowski and Rocca (1981) describe the DMO operation as common offset mi-
gration followed by zero offset diffraction. This definition does not have the plane
reflector assumption. They mention that, according to wave theory, the amplitude
of the operator should increase along the impulse response at large offsets and small
travel times. Deregowski (1982) states in his paper that DMO removes reflector
point dispersal. He shows that, for a plane dipping reflector under a constant veloc-
ity overburden, the DMO operator moves dipping energy on common offset gathers
in such a manner that common midpoint gathers become true common depth point
gathers. Hale’s work (1983) provides an efficient way to do dip correction under
the constant velocity assumption. He shows that under these conditions his DMO
operator is schematically correct. Several important features of DMO, however, are
not obvious from his derivation.

To derive the DMO operator in a way that shows the removal of reflector point
dispersal explicitly, I worked out a pair of equations that relate the constant offset
travel time and midpoint to the zero offset travel time and midpoint corresponding
to a common depth point. By following Hale’s approach I obtained a new operator.
As expected, the new operator has the same phase response as Hale’s operator but
different amplitude response because of the different Jacobian involved. I noticed
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FIG. 1. Common midpoint geometry.

that the impulse response of the new operator has properties that agree qualitatively
with wave theory. I used synthetic results to show that the new operator tends to
give a uniform amplitude response for varying dips while Hale’s operator has a
lowpass dip filtering effect.

In the following sections, I compare the derivations of these two operators and
then use synthetic examples to confirm my results.

THEORY

The derivation of the new operator is so similar to what Hale did that I will
review his results first.

Hale’s DMO

Let’s begin with some notation. Let P(t,y, h) represent recorded data, P,(t,,y, k)
represent the NMO corrected data, and Po(to,y, k) represent the NMO and DMO

corrected data.

From the geometry shown in Figure 1, the relation between the travel time for
zero offset and the travel time for a half offset h at a common midpoint is found to

be: .
, 4h?  4h%in%g)\?
t0= t* — 02 + ‘02 ’ (1)
1
4h?\?
ty = (t2 - —v?) ; (2)
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FIG. 2. Common depth point geometry.

where 6 is the dip angle of the subsurface. By substitution, Hale derives his DMO
to be:

Polwo, k, h) = / / Pa(tn,y, h)|J |2 dt dy, (3)
Po(to,y, h) = FT_I [Po((.do,k, h)] ’ (4)
where |J| is the Jacobian and @ is the phase shift,
1
|J| = ags
Vi1t ua
h2k?
§=thn 1+m—ky.

Equations (1) and (2) relate two travel times at a common midpoint, the zero
offset travel time t;, and the constant offset travel time ¢t. From Figure 1 it is
clear that the events associated with these two travel times are not from the same
reflection point. This is why the removal of reflector point dispersal is not obvious.

A new derivation

To have true common depth point gathers we need to make both time and
midpoint corrections to the dipping events on common offset gathers. From Figure
2 we can find the equations relating the travel time ¢ and midpoint y of half offset ~
to the zero offset travel time t; and midpoint y4, with the dip angle 6 as a parameter.

t
tqg = ———nz_—z, (5)
/1_’_ 4hvgs:§ [/
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2hsiné
Ya = y-— —gf":jj;ha (6)
1+ 2%
where t,, is defined in equation (2). Now the two travel times are associated with a
common reflector point and 8 is the dip angle at this common reflector point.
Using the formula p .
2sind ta 4
v Yd  Wd
where wy is the frequency corresponding to ¢4 and k4 is the wavenumber correspond-

ing to y4, we have

ts = ———s, (8)

Ya = y—*—“"’i';,Th~ (9)

L+ oot

wy

Now we can derive the new DMO integral. Let P;(t4,ya, k) be the new dip-moveout
corrected data,

Py(wg, kayh) = / / Py(ta, ya, h)etwete—ikavads . dy,

= //Pn(t,,,y, h)|J e’ dt.dy (10)
and
Pd(td, Yd, h) = FT_I [Pd(wda kda h)] ) (11)
where |J| is the Jacobian and @ is the phase shift
1+ 2558
= —=4 5
1+ %—qg)z
h?k?
D = wyt,y |1+ it — ky.

Comparing these results with Hale’s DMO we see that the phase shifts are
identical but the Jacobians differ by a factor of

which can be recognized as a time and offset dependent highpass dip filter.

The above derivation also serves as another way to show that:
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1. DMO removes reflector point dispersal.

2. DMO works for any curved beds that have reflections consistent with ray
theory.

Impulse responses

We can obtain the impulse response of the DMO operator by setting P, (¢, y, h)
to be an impulse; the results are shown in Figures 3 and 4. At large offsets the
amplitude of the operator increases along the impulse response at small travel time.

SYNTHETIC RESULTS

I generated a synthetic example to confirm the theory. The synthetic section
consists of a horizontal reflector and a dipping reflector. The velocity of the medium
is assumed to be constant. The results are shown in Figure 5. For the horizontal
reflector the results of two operators are the same but for the dipping reflector the
new operator gives larger amplitude than does Hale’s operator. The new operator,
therefore, tends to give uniform amplitudes for varying dips.

CONCLUSION

This paper presented a new derivation of the DMO operator. Theoretically the
new operator is more consistent with wave theory, but in practice, it would not do
significantly better than Hale’s DMO. Nevertheless, the derivation itself provided
another way to show several properties of the DMO operation.
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(b) Hale's DMO
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(d) New DMO-Hale's DMO
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FIG. 3. The impulse responses of DMO operator at offset h=1.6km. (a) Impulses
in the NMO corrected common offset section. (b) The impulse responses of Hale’s
operator. (c) The impulse responses of the new operator. (d) (c)-(b).
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(b) Hale's DMO
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FIG. 4. The impulse responses of DMO operator at offset h=3.2km. (a) Impulses
in the NMO corrected common offset section. (b) The impulse responses of Hale’s
operator. (c) The impulse responses of the new operator. (d) (c)-(b).
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FIG. 5. The stacked results after the DMO operation. The synthetic section con-
tains one horizontal reflector and one dipping reflector. For the dipping reflector,
the new operator gives larger amplitude response than Hale’s operator. (a) Stacking
after the NMO correction. (b) Stacking after Hale’s DMO correction. (c) Stacking
after the new DMO correction. (d) (c)-(b).
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