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Prestack depth migration velocity analysis: linear
theory revised

John T. Etgen

ABSTRACT

A residual moveout correction applied to prestack-depth-migrated constant-
offset sections approximates remigrating the constant-offset sections with a per-
turbed interval-slowness model. The residual moveout correction is applied to
each offset for all points in the migrated image, and a moveout corrected stacked
section is made for a range of residual slownesses. The result constitutes the
data space for an optimization problem that estimates perturbations to the
interval-slowness model that will result in the most coherent migrated image.
Changes in the interval-slowness model can be linearly related to changes in the
residual moveout curves that best approximate the offset-stacking curves re-
quired to form the migrated image produced by the perturbed interval-slowness
model. The linear relation between changes in the interval-slowness model and
the best fitting residual moveout curves is used to compute the gradient of the
total coherence of the image with respect to the interval-slowness model from
the precomputed data space. An iterative optimization algorithm driven by
this gradient will estimate the interval-slowness model that produces the most
coherent prestack depth migrated image of the data.

INTRODUCTION

Toldi (1985) introduced an operator that relates laterally varying interval slow-
nesses to observed laterally varying stacking slownesses for horizontal reflectors.
Fowler (1985, 1988) took a similar approach and derived an operator that relates
laterally varying interval slownesses to dip-moveout corrected stacking slownesses
and to prestack time migration slownesses. Al-Yahya (1987) introduced a residual
moveout correction applied to migrated shot profiles that approximates the result
of migrating with a new slowness model. In my previous report (Etgen, 1988), I

SEP-59




FEtgen 122 Velocity analysis

extended Al-Yahya'’s residual moveout correction to account for more general struc-
ture. I also derived a linear operator similar to the ones used by Fowler and Toldi
that related changes in the interval-slowness model used for shot profile migration
to changes in the curvature of the residual moveout operator.

In this paper, I apply residual moveout to prestack-migrated constant-offset
sections rather than prestack-migrated shot profiles. The residual moveout correc-
tion converts migrated constant-offset sections from images formed with an initial
interval-slowness model to images formed with a perturbed interval-slowness model.
The residual moveout correction can be decomposed into two corrections. The first
correction is a differential moveout over offset much like NMO; the second is a resid-
ual zero-offset migration. The residual zero-offset migration is the same at a given
point for all constant-offset sections, thus it will not change the offset coherence of
any event. Moreover, Fowler (1988) found that the zero-offset migration component
can confuse the velocity analysis by moving events. I now apply the residual move-
out correction to only change the curvature of events over offset and not perform
the residual zero-offset migration. For horizontal reflectors, this is equivalent to
performing NMO and stack at fixed zero-offset traveltimes rather than performing
NMO and stack and converting the stacked image from time to depth.

To derive the linear operator, I find the changes in traveltimes to reflectors
due to changes in the interval-slowness model using tomography. A change in
the traveltime to a reflector implies that the stacking trajectory over offset must
change to move the event. I approximate these changes in the stacking trajecto-
ries with changes in the derived residual moveout curve. Changes in the stacking
trajectory can be fit with linearized version of the residual moveout equation us-
ing least squares. The least squares fit combined with the tomography calculation
defines an operator that relates changes in interval-slowness to changes in the cur-
vature (or residual slowness) of a moveout operator. This operator can be used
to find the change in the migrated image due to a change in the interval-slowness
model, and hence, the gradient of the coherence of the image with respect to the
interval-slowness model. This gradient drives an iterative optimization procedure
that should estimate the interval-slowness model that produces the most coherent
image using prestack depth migration.

RESIDUAL MOVEOUT CORRECTIONS

The image of a dipping reflector (shown in Figure 1) on a constant-slowness
migrated constant-offset section is the tangent line to an ellipse. The equation of
the ellipse is equation (1).

t =w\22+ (s — z)? + w\/2% + (g — x)? (1)

If the slowness used for migration is changed the location of the migrated reflector
will change as shown in Figure 2. The new position of the migrated reflector is the
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FIG. 1. The image of a constant-slowness-migrated dipping reflector is the tangent
line to an ellipse with foci at source and receiver.

tangent line to another ellipse given by equation (2).

t= wn\/z,z, + (8 — )% + wn\/z,z, + (g — zn)? (2)

To first order, a point on the original reflector will move in the direction normal
to the reflector (Fowler 1987). In light of this, recast the equations for the migrated
positions of the reflector to use the dip of the event # and the arclength of the
normal to the reflector o at the given point as independent variables. For constant
slowness the normal to the reflector is the zero-offset ray.

t= w\/a2 cos?8 + (s — osin4)? + w\/02 cos?8 + (g — osinf)? (3)

t = wn\/aﬁ cos?f + (s — 0,sin )% + w,,\/a,ﬁ cos? 6 + (g — o, sin 6)? (4)

For a given event of interest the traveltime t is fixed. Combining equations
(3) and (4) and solving for o,(h) in terms of o would give the position of the
reflector originally at o for different offsets after the slowness is changed. h =
(g9 — s)/2 is called the half-offset. However, solving equations (3) and (4) for the
arclength o, involves much algebra, and I was unable to obtain a useful expression
for o0,. I simplified equations (3) and (4), replacing the sum of the true shot to
reflector and geophone to reflector distances with twice the root-mean-square of
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FIG. 2. The change in the position of a migrated reflector due to a change in
migration slowness is in the direction normal to the reflector.

those distances. This turns the double square-root equations into single square-
root equations. Equations (5) and (6) give the approximations to equations (3) and

(4).

24 g2

t=w\/¢72+s -;—g —(s+g)osind (5)
24 g2

t = wn\/a,"; + 2 —;—g —(s+g)o,sind (6)

Combining equations (5) and (6) and solving for o(h) in terms of o,, w,, w,
s, and g tells which points in the migrated image to move to the output location
0, when the slowness model changes from w to w,. o(h) can be called a residual
moveout curve or an offset-stacking trajectory.

g2+32
2

(g + s)2sin? 0
(7)

The residual moveout equation does not depend on w, or w directly, but only on
their ratio v = w, /w. Equation (7) performs residual moveout in depth. An event
on a zero-offset section moves from o, = ¢(0) to 0,(0) = w/w, o,. This movement
is a residual zero-offset migration. The velocity information is contained in the
differential moveout over offset; the residual zero-offset migration merely changes
the location of the event not its coherence over offset. Figure 3 shows residual

o(h) = _—__(%g) sin 0+\/720£ +(y?-1) + Y20, sinf(g + s) +
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Stacking trajectory
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FIG. 3. Residual moveout curves for a horizontal reflector given by equation (7).
Each curve is the offset stacking trajectory for a different . <y ranges between .8
and 1.2. The result of stacking along each curve is placed at depth 1 200. The
zero-offset of one event appears at different depths for different ~.

moveout curves for a horizontal reflector. Figure 4 shows residual moveout curves
for a dipping reflector. When the reflector is dipping, the residual moveout curves
lie in a plane that is constant with offset containing the normal to the reflector.

Rather than stack the data and place the result at o, I will stack the data and
place the result at 0, = w,/w 0,, the zero-offset of the stacking curve. Equation
(8) gives offset-stacking curves that pass through the same location on the original
migrated zero-offset section for all values of 4. This is analogous to stacking at fixed
zero-offset traveltimes rather than performing NMO and stack for fixed locations
in depth.

2

)+ (g + s)2sin® @
(8)

Again v = w,/w, which controls the curvature of the residual moveout operator.
Figure 5 shows residual moveout curves (or offset-stacking trajectories) calculated
with equation (8) for a horizontal reflector. For horizontal reflectors, these curves are
simply residual NMO (normal moveout) curves. Figure 6 shows residual moveout
curves for a dipping reflector. As in Figure 4, the residual stacking trajectories are
contained in the plane that contains the normal to the reflector. As opposed to

o(h) = Msiné’—i— \/03+ (72 -1)

5 + 7 0,sinf(g + s
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FIG. 4. Residual moveout curves for points on dipping reflectors given by equation
(7). The dip of the reflector, § = 26 degrees. The stacking trajectories are now
curves in 3-space. All curves are contained in the plane of the normal to the reflector.
A given event will appear in different zero-offset locations as + changes.

Figures 3 and 4, the offset-stacking trajectories for a given output location all pass
through the same zero-offset location in the input.

LINEAR THEORY

This section describes a linear relation between changes in the interval-slowness
mode] used for prestack depth migration and changes in the residual moveout curves
governed by equation (8). Consider a trial reflector shown in Figure 7. A pertur-
bation to the interval-slowness model will produce a change in travel time of any
ray passing through the perturbation. Changes in the traveltime along any ray
from a source to the trial reflector point to a receiver result in changes in the lo-
cation of an event in the appropriate migrated constant-offset section. The change
in the position of an event originally at the trial reflector point implies we must
change the offset-stacking trajectory to find the new event that will move to the
trial reflector point when the interval-slowness model is perturbed. This change
in stacking trajectory can be linearly related to a change in the residual moveout
curve described by equation (8). We can apply residual moveout corrections to the
migrated constant-offset sections and form stacked images for a range of 4. The lin-
ear relation between changes in the interval-slowness model and changes in the best
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FIG. 5. Residual moveout curves for a horizontal reflector given by equation (8).
Each curve is the offset stacking trajectory for a different «. < ranges between .8
and 1.2. The result of stacking along each curve is placed at the common zero-offset
of all stacking curves. This residual moveout operator only changes the curvature
of an event not its zero-offset location.

fitting residual moveout curves can be used to compute the gradient of objective
function (total stack semblance) with respect to the interval-slowness model.

At due to Aw(z, 2)

If the interval-slowness model w(z, 2) is perturbed by Aw(z, z), the traveltime
of any ray passing through the perturbation will change. Write the traveltime along
a ray from any subsurface point to a surface point (a source or receiver) as

tray = / w(z,2)dS . (9)
ray
For small perturbations to the interval-slowness model, Aw(z,z), we can apply

Fermat’s principle and calculate the change in traveltime due to a perturbation to
the interval-slowness model as:

At = / Aw(z, 2)dS . (10)

The integral of the slowness perturbation is evaluated along the unperturbed ray.
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FIG. 6. Residual moveout curves for points on dipping reflectors using equation
(8). As in Figure 4, the stacking trajectories are curves in 3-space contained in the
plane of the normal to the reflector. The result of stacking over any curve is placed
at the zero-offset location common to all the stacking curves. Events stay at fixed
zero-offset locations.

Ao, due to At

For a given reflector point and a given dip 8, the family of rays that obey Snell’s
law (angle of incidence = angle of reflection) at the reflector point are the rays along
which most reflected energy travels. These rays are called specular rays. A change
in traveltime along a specular ray caused by a change in interval slowness will lead
to a change in the location of the image of the reflector. Conversely, to form the
stacked image at a given point, we must change how the migrated constant-offset
sections are stacked.

For a constant slowness medium, the derivative of the traveltime with respect to
a change in the location of a reflector in the direction of its normal can be calculated
using the chain rule. The arclength normal to the reflector is o,; Az, = sin8 Aoy,;
Az, = cosf Ao,. Write the traveltime as:

t=w\22+ (s —z. )t + w22+ (9 — z,)%. (11)
z,, 2, are the coordinates of the reflector point. The derivative of traveltime with
respect to movement normal to the reflector can be written as:

o _ 9t 9z, 0t 0z
do, Oz,d80, 98z do,’
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FIG. 7. Specular rays for a dipping reflector. If the specular ray for a given offset
goes through the slowness anomaly, the position of the reflector will be perturbed.

where 5 3
Ty S — Z, g — Iy .
=w + )sind ; (12)
000, " T Gmay  VEra-a)
at Oz, 2, 2,

— =w + cosf .
900, "t (e=a)  yaAtl-a)

The derivative of ¢t with respect to o, does not depend on t,z, or z explicitly,
only on the dip and opening angles of the rays at the reflector (see Figure 7) and
can be rewritten as:

ot

39, = w(cos Y cos§ +sintpsinf + cospcosf +sinpsind) =2 wcosa . (13)
,

Since the total traveltime ¢, of an event in the unmigrated data is fixed, any change
in the traveltime At, along the specular rays must be compensated by a change in
traveltime due to a change in the position of the reflector.

ot

At, + — Ao, =0 .
+6a, o (14)

Solving for the change in the position of the reflector,

do
Ao, = ——LAt, .
o 3 (15)
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If the reflector originally at (z,,z,) moves when the interval-slowness model is
perturbed, the stacking trajectory for the given location must change. To first order,
the event can be moved by Ao, if the stacking trajectory is perturbed by —Aog,.
Write the change in the stacking trajectory as:

do, At=—1— 1

16
ot 2w coso ( )

Ao, =

Although the derivation assumed slowness was constant, to an approximation, the
derivative can be used for a non-constant slowness model if w is taken to be the

slowness at the reflector, w(z,, 2,).

oo, 1 1
Ao, = Z2AL = At . (17)
ot 2 w(z,,2,) cosa

A~ and Ao, due to Ao,

The change in the offset-stacking trajectory Ao, computed in the last two sec-
tions can be related to a change in the best fitting residual moveout curve gener-
ated by equation (8). The best fitting residual moveout curve may require not only
changes in ~, but also changes in o, the reference arclength normal to the reflector.
Finding the derivatives of o, with respect to y and o, linearizes equation (8) about
a given value of v and 0,. A change in o, due to a change in «y and o, can be written
as:

oo, do,

Any
a7 277 3o,

The expressions for the derivatives do,/dv and 80,/d0, can be found in appendix
A. Immediately following prestack depth migration before the slowness model is
changed, linearize about the 4 and o, that produce no residual moveout v = 1 and
0, = z/cosf. As the slowness model is perturbed the reference values used for
linearization change.

Ao, = Ao, . (18)

Rather than finding Ao, for each offset from A~ and Ao,, we need to do the
opposite, find the Ay and Ao, that best fit the Ao,(h) of the migrated constant-
offset sections at a given point in space by minimizing:

hmaz a
E=3 (Aoy(h) - 0’(h)A7—aa’—(h)Aoo)2 (19)

using least squares. The solution to this least-squares problem for Ay and Ao,, is
the solution to the normal equations:

hmaz hma: hma,;

Z Al > AB, > AnAo,(h)

hmin hmin [ A’Y — hpmin 20)
hmaz hmaz Ao‘o - hma: ) (
Z AxBy, Z B? > BhAog,(h)

mtn Amin hinin
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A, and B, are do,(h)/d~ and do,(h)/d0o, respectively, at a fixed spatial location.
Equation (21), the solution to equation (20), gives changes in the residual moveout
curve that best fits the changes in stacking trajectories.

[an) = [12) 2 2

Expressions for Iy and I';, can be found in appendix B.

Figures 8 and 9 show the operators I', and T, for one point on a horizontal
reflector and a dipping reflector respectively. The value of the operator as a function
of offset is the change in ~ or 0, due to a unit change Ao, in the stacking trajectory
at that offset. Figure 10 shows an example of best fitting residual moveout curves for
perturbations to the offset-stacking trajectory at small and large offsets. Figures
8, 9, and 10 show that the effect of a perturbation to the stacking trajectory at
small offsets is opposite to the effect of a perturbation at large offsets. A positive
perturbation to the stacking trajectory at inner offsets leads to a negative change
in the apparent residual slowness, ¥ = w,/w. The perturbation at inner offsets
leads to a pull down of the zero-offset of the best fitting residual moveout curve. A
positive perturbation to the stacking trajectory at outer offsets leads to a positive
change in the apparent residual slowness, v = w,/w. The perturbation at outer
offsets leads to a pull up of the zero-offset of the best fitting residual moveout curve.

Equation 21 can be combined with the operators described in the previous two
sections to write one operator that relates changes in interval slowness to changes
in the parameters that describe the best fitting residual moveout curve at a given
point in space. dt/3w converts changes in interval slowness to changes in traveltime.
It is a tomography operator (Fowler, 1987); call it T. Jo0,/dt converts changes
in traveltime to changes in the offset-stacking trajectory; call it ©. Writing the
operator in compact notation,

[ﬁl]z[fl]‘*“w: [g;’o]Aw- (22)

The linear operator in equation (22) relates changes in the interval-slowness
model to changes in the best fitting residual moveout curve at a fixed spatial lo-
cation. However, events in the residual-moveout corrected images obtained from
equation (8) are not at fixed spatial locations. The spatial location of a fixed event
on the residual-moveout corrected images depends on ~ and o,. The next section
describes how to evaluate the the operator at fixed points in the data space rather
than at fixed spatial locations.

Data space and model space grids -

Residual moveout governed by equation (8) corrects migrated constant-offset
sections for differential moveout over offset due to a change in the slowness model
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FIG. 8. The top graph shows the change in v for each offset due to a unit change
in the stacking trajectory at that offset (Ao, = 6(h — h,)) for a horizontal reflector.
Perturbations at inner offsets give a negative response, while perturbations at outer
offsets give a positive response. The bottom graph shows the change in o, for each
offset due to a unit change in the stacking trajectory at that offset. Inner offsets
show a positive response and outer offsets a negative response.
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FIG. 9. The top graph shows the change in « for each offset due to a unit change
in the stacking trajectory at that offset (Ao, = §(h — h,)) for a dipping reflector,
0 = 65 degrees. The bottom graph shows the change in o, for each offset due to
a unit change in the stacking trajectory at that offset. The operators are similar
to the I'y and T',, operators in Figure 8. The magnitudes of the operators change
slightly.
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FIG. 10. Best fitting residual moveout curves for perturbations to an inner offset
and to an outer offset. Both cause changes to the curvature and the zero-offset
location of the best fitting stacking trajectory. The plot scale is expanded to show
the effect more clearly. The perturbation is a unit change in stacking trajectory for
one offset.
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and does not perform residual zero-offset migration. The zero-offset location of an
event initially at o, stays at o, after residual moveout for all y. When « = 1, the true
spatial location of the event is 0,. When « # 1, the true spatial location changes
from o, to 0, = 1/4 0,. I will call the output space of residual-moveout corrected
stacks as a function of v the pseudo-depth space. This “space” is the data space
for estimating changes to the interval-slowness model. Spatial coordinates in the
pseudo-depth space are denoted by coordinate pairs (&,7); derivatives evaluated at
fixed locations in pseudo-depth will be denoted by the notation év/6¢ for example.
When ~ # 1, events are not at their true spatial locations but at some scale factor
(7) times their true spatial locations.

The interval-slowness model and the linear operator just described are evaluated
at true spatial locations. I will denote true spatial locations with coordinate pairs
(z,2). Derivatives evaluated at fixed true spatial locations will be denoted by the
usual partial derivative notation d/dw for example. To apply the linear operator
to relate changes in interval slowness to changes in the residual moveout curve
for some event (in the fixed pseudo-depth space), we maintain a map between the
pseudo-depth location of an event (£,7) and its true depth (z,z). As the interval-
slowness model changes, the true spatial location (z,z) of a fixed event in (£,7)
space will change.

The linear operator that relates changes in the interval-slowness model to changes
in v is defined at fixed (z, 2). Perturbing the interval-slowness model at (z,, z,) will
change the best fitting + value of an event at (£,7) in the data space corresponding
to the (z,z) location under consideration, and also cause (z,z) to map to a new
value in the data space (¢',n'). Let v, £, and n denote values before the interval
slowness is perturbed and +' ,£', and n' denote values after the interval slowness is
perturbed. Applying the linear operator to the perturbation of the interval-slowness
model write: P

Y (€n') =(&n) + X aisza,za : (23)

w
ZTa,Za

We are interested however, in knowing how ~ changes for a fixed location (&,7) in
the data space. To first order,

) )
v(&n) =~'(§ — A& n' — An) =4'(¢',n") - %AS - %An : (24)
The A¢ and An in equation (24) represent the change in where a point (z,z2) in
the true depth space maps in (£,n) space due to the change in the interval-slowness
model. Combining the above equations, we can solve for the change in v at a fixed

point (&,7n).

v (&) =(&n) + D g—;sza,n QAS— %An ; (25)

8¢

where
A€ =sind Ao, ; An =cosf Ao,,
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and

Ao, = Z

Za,2%a

Awg, s,

ow

We can now write the linear operator that relates perturbations in the interval-
slowness model, on a fixed (z,z) grid, to changes in v the parameter of the best
fitting residual moveout curve on a fixed (£,n) grid.

Al

20}
Av(é,n) = B —Aw — [— sin @ + — 0] F (26)
Expressing the derivatives above as the operators of equation (20) write
oy _ 1o} 10}
A’V(faﬂ)=5—wAw— {Gq [6£sn0+—ncosﬂ]Gao]Aw . (27)

Gradient of the objective function

Residual moveout correction and stacking is applied to the migrated constant-
offset sections for a range of 4 building the data space. The objective function I
seek to maximize is the sum of the stack semblance over all pseudo-depth locations
This objective function @ is evaluated for fixed events rather than for fixed spatial
locations.

Q((&m) =2_8((&n), & n) (28)

&n

S is the stack semblance at a given location (&,7n) in the data space for a given ~.
Applying the chain rule, write the sth component of the gradient of the objective
function with respect the interval-slowness model.

6S(v,€n) _ —65(&n) 8v(&m)
Sw; N 52; ] Sw; ) (29)

Vu@ = >

é&n

Since we have precomputed values of S for each £, 5, and «, the derivative of the
objective function with respect to v can be calculated by finite differences.

6S(&,n) _ 1

5y "A_,,[S(W(f"?) + Av,€,n) — S(¥(€,1), & n)] (30)

Multiplying 6S/6~ by év/éw is equivalent to multiplying by the transpose of the
linear operator of the previous section.

V@ = [G’f - GT [5 sin § + 6—cos 0]] v.Q . (31)

6¢

Since G, and G,, contain a tomography operator, the gradient of equation (31) is
a filtered tomographic back-projection (Fowler, 1988). The filter converts changes
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in stack semblance to traveltimes that can be used to update the interval-slowness

model.

OPTIMIZATION

The gradient just described can be used to drive an iterative optimization
method to find the interval-slowness model that maximizes our objective func-
tion, the total stack semblance. For simplicity sake I will outline a steepest as-
cent algorithm that uses the linear theory of this paper to find the best interval-
slowness model. In practice, more sophisticated optimization techniques such as
the conjugate-gradient method should be used.

Set initial interval-slowness model w(z, z)
Migrate each constant-offset section using w(z, 2)
Estimate dips on stacked image 8(&,n)
Apply residual moveout and stack for range of 4 making S(~, £,7)
Iterate until V@ is small
{
1. Compute V.,Q, 6v/6¢, and 6+/6n by finite differences
2. Compute G, and G,,

3. Compute V,Q = [G’f - GT [g—'el sin 8 + %3 cos 0]] v.,Q
4. Line search for § that maximizes Q(w + 8V, Q)

5. Update interval-slowness model, «, and o,

Aw =V,Q

w(z,z) = w(z,z) + Aw

v(&,n) =v(&,n) + [G’,, — [g—} sin @ + %}cos 0] Gao} Aw
6. Compute £(z,2) and n(z, 2)

€(z,2) = €(z,2) +sinfd G, Aw

n(z,2z) = n(z,2) + cos G,,Aw
7. Compute z(&,7n) and 2(&,7n) by inverse interpolation

}

If the starting interval-slowness model is far from the best interval-slowness
model, the outlined optimization method may not be able to reach the best interval-
slowness model. Residual moveout and stack may not be a good approximation to
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remigrating the data when large perturbations to slowness model are necessary. The
optimization can be reinitialized by remigrating the data and building a new data
space when the perturbations to the interval-slowness model become too large.

SUMMARY

Migration with interval-slowness model w(z, z) followed by residual moveout and
stack approximates migration and stacking with interval-slowness model w(z, z) +
Aw(z,z). The residual moveout operator has two parts. The first changes the
curvature of events at a fixed zero-offset location. The second is a residual zero-
offset migration. The residual zero-offset migration does not change the coherence
of events over offset so I neglect it when computing the stack semblance. Changes
in the interval-slowness model can be linearly related to changes in the best fitting
residual moveout curve. This linear relation is used to compute the gradient of the
stack semblance of the migrated image with respect to the interval-slowness model.
The gradient drives an iterative optimization to find the interval-slowness model
that gives the most coherent migrated image.
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APPENDIX A

The derivatives of o,(v,0,) at fixed (z,,z) with respect to v and o, for each
migrated constant-offset section are used to linearize equation (8) of the text. Re-
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stating equation (8), write

- 2 2 25in? @
o,(h) = %sin0+\/¢7§ + (7% - l)g ;8 + v 0,sinf (g +s) + (g +9)*sin0 .
(A.1)
Differentiating with respect to «
2, o2
_3(:9;’(7/7,1 = %R'% [2’7(g_-;—s__) + 0, siné (g + s)] . (A.2)
Differentiating with respect to o,
60,(h) 1 1 . ]
30, = ER 2 [200 +~ sind (g + s)] ; (A.3)

In equations (A.1) and (A.2)

2 4 g2
R=\/o§+(72—1)g ;8 + v 0,5in8 (g +s) +

(g + s)2sin® @
-

APPENDIX B

Write the normal equations to solve for Ay and Ao,, the change in the param-
eters of the best fitting residual moveout curve as

Rmax Rmax hmaz

E Ai Z AhBh Z AhAO',(h)

hmin hmin [ A’Y ] — homin (B 1)
hma! hmas Aao hmaz ’ '
> AwBy Y B > B;Ao,(h)

huin Amin =1

where A), = do,(h)/d~ and B, = 80,(h)/d0,. The solution to the normal equations

[a0) = (57 ) aotn -

hmaz hma! hma:
1 Z B;‘: — Z AhBh Z AhAO',(h)
hmin Rmin min
hma: hma: hma: hmaz hmaz }’:maz
hE A} hZ By — (3. AxBy)’ —hZ AnBy, hE A} 2~ BrAo,(h)
min min hmin min min hunin

(B.2)
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