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Interval velocity estimation from beam-stacked
data — 2-D gradient operator

Biondo Biond:

ABSTRACT

The theory that I described in SEP-57 (Biondi, 1988) can be applied to com-
pute the gradient of energy in beam-stacks with respect to the velocity model
when the model is two-dimensional (2-D). The computation of the gradient uses
a linear operator that relates perturbations in the velocity model to resulting
changes of beam-stack’s parameters. To evaluate this operator I developed a
new ray-tracing algorithm that computes the gradient of raypaths and travel-
times with respect to the velocity model. The resulting back-projection operator
is spatially localized around the down-going and up-going rays. The operator
should resolve well local velocity anomalies. The 2-D inversion is untested, but
the 1-D method successfully reconstructed the velocity above a dipping reflector.

INTRODUCTION

Various methods for estimating velocity in geologically complex areas have been
proposed. A leading approach uses a tomographic fitting of the velocity model
to traveltimes of reflections. The traveltimes can be directly picked from the data
(Bishop et al., 1985) or picked from the data transformed by use of local slant stacks
(Sword, 1987). An alternative approach, which avoids the picking of traveltimes,
maximizes energy in stacking-velocity domain (Toldi, 1985) or in migration-velocity
domain (Fowler, 1988). The method that I described in a previous report (Biondi,
1988) combines some elements of Sword’s method with Toldi’s idea of maximizing
energy in a transformed domain. I use energy in beam-stacked data as an objective
function to be maximized by the best choice of the velocity model. A beam stack
is a linear transformation on the data similar to a local slant stack; it differs from
a slant stack in that its stacking-trajectory is hyperbolic instead of linear. (Kostov
and Biondi, 1987).
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In the previous paper I derived the general theory but I tested it only in the par-
ticular case of a horizontally-layered medium. The implementation of the method
in the general two-dimensional (2-D) case requires a sophisticated ray-tracing al-
gorithm; I present this algorithm in the Appendix. Using the new ray-tracing
algorithm I evaluate the linear operator that relates perturbations of the velocity
model to the resulting changes of beam-stack’s parameters. The transpose of this
operator is the back-projection operator that is used to compute the gradient of
the objective function with respect to the velocity model. The properties of the
back-projection operator determine the resolving power of the velocity estimation.

In the next section I review the theory of my estimation method and derive the
formula I use to evaluate the gradient operator. In the section on the back-projection
operator I display the operator and show that in a special case my operator is similar
to Toldi’s and Fowler’s operators. In conclusion I present some preliminary inversion
results from synthetic data.

INTERVAL VELOCITY ESTIMATION METHOD

In this section I review the velocity estimation method that I presented in my
last report (Biondi, 1988).

The estimation starts from beam-stacked data. Beam stacks are functions of five
variables: midpoint y, half-offset h, midpoint ray parameter p,, offset ray parameter
pn and traveltime ¢t. The amplitude of Beam(y,h,t,p,,ps) is proportional to the
energy of the reflected waves recorded with observed horizontal ray parameters p,
and pj, at midpoint y, offset h, and traveltime t. The amplitude of the beam stack
can be simply the square of the sum of the amplitudes along the stacking trajectory
or the value of a coherency function, such as semblance, computed on the stacking
trajectory.

Estimating the interval velocity in the original beam stack domain can be prob-
lematic (Biondi, 1987). Therefore in my last report I introduced the following
transformations of coordinates;

T=1— phh’ (la)
V2
g:h—”"4°t, (1b)

where V} is a constant average velocity. These transformations do not have a specific
physical meaning, but they are convenient for the inversion.

Defining an objective function

The velocity estimation is a tomographic fitting to beam-stacked data of travel-
times and surface locations predicted by the velocity model. The transformed offset
€, as a function of transformed traveltime 7 and midpoint y, is computed by use of
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ray tracing for each reflector point R; and for all ray parameters p, and p,. The
function & = £(y,7; m) defines a manifold in the data space. The goal of inversion is
to maximize the energy in beam-stacked data on the manifold ¢ = &(y,7;m). The
inversion is formulated as the solution of the non-quadratic optimization problem
of finding the maximum with respect to the slowness model of the total energy

E(m) :ZZZBeam(yh£(yj’7i;m)’7j’pu’ph)’ (2)

Py Pr

or in more compact notation

B(m) = ¥ Bi(&(m)), (3

where 1 is the index of the data points used, including all reflector locations R; and
all ray parameters p, and p.

Computing the gradient of the objective function

The maximum of E(m) can be found with a gradient algorithm. Implementa-
tion of a gradient algorithm requires that the gradient of the objective function be
computed with respect to the model. The gradient can be expressed as

9 B;(&:(m)) 0& 9B;(&)

= — AN _ T
VEm=3 — =3 2~ 2c, — ¢ Du (4)

i i
where the derivatives are computed at fixed y,7,p, and p.

The vector D is easily computed from beam-stacked data with a finite-difference
approximation of the derivative operator. This vector represents the interaction of
the inversion algorithm with the actual data.

To evaluate the Frechet derivatives the following relation is used:

o¢)  _ 8¢ 9¢ 9¢
om ~ 6m dy ar

X3

by _ 47
ém

~ fm

(5)

(#.7) (R,By.Br) (BR,py,Bs) (w7 (R.By.B1) (7.7)

Partial derivatives 3¢/dy and 8¢/dr are evaluated by use of finite difference on
the manifold defined by { = &(y,7;m), at constant transformed traveltime 7 and
midpoint §. Total derivatives with respect to the velocity model §¢/6m, dy/ém
and 67/6m, are computed by use of the ray-tracing method presented in Appendix
A, for fixed ray parameters p,, ps, and reflector point R.

BACK-PROJECTION OPERATOR

The linear operator G relates slowness perturbations to the resulting perturba-
tions of the transformed offset {. The transpose operator G” is used for computing
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the gradient. The operator GT back-projects derivatives of the objective function
with respect to the transformed offset £ into the slowness model.

The back-projection operator is a function of the location of the slowness anomaly,
the reflector point, the midpoint position, and the ray parameters. The next series
of figures display some interesting slices of this multi-dimensional operator. Figure
1 shows the amplitude of the operator as a function of the location of the anomaly,
at fixed reflector point, midpoint, and ray parameters. The operator is computed
by application of equation (5) and ray tracing through a background model with a
constant velocity of 2 km/s. The midpoint ray parameter is zero, and the offset ray
parameter is .06 s/km. The operator is smooth because the model is parametrized
by use of B-spline functions. The operator is non-zero in a band around the down-
going and up-going rays. Above the rays the operator is positive (light in Figure
1) and below it is negative (dark in Figure 1). A slowness anomaly above the ray
makes the ray travel more horizontally, and therefore increases the offset; below the
ray an anomaly makes the ray travel more vertically and thus decreases the offset.
Figure 2 shows a cross-section of Figure 1 taken at constant depth of 180 m. The
operator is symmetric and looks like a smoothed first derivative operator.

Figure 3 shows the back-projection operator obtained when the midpoint ray
parameter is .4 s/km and the offset ray parameter is .06 s/km. Figure 4 shows a
cross-section of Figure 3 taken at constant depth of 180m. The operator is asym-
metric.

Figure 5 shows the operator obtained when the background velocity is linearly
increasing with depth at a rate of 1 s~1. The midpoint ray parameter is .4 s/km
and the offset ray parameter is .06 s/km. The rays are no longer straight lines,
and the operator follows the bending of the rays. Figure 6 shows a cross-section of
Figure 5 taken at constant depth of 180m.

Figure 7 shows the operator obtained when the background velocity has a con-
stant lateral gradient of 1 s~1. The midpoint ray parameter is zero and the offset
ray parameter is .06 s/km. The apparent dip of the reflector is the effect of the ray-
bending caused by the lateral gradient in velocity. Figure 8 shows a cross-section
of Figure 7 taken at constant depth of 180m.

The previous figures show the gradient for one beam. The total gradient is the
combination of the contributions of all the beams. The set of beams having the
same reflector position and the same midpoint ray parameter, but varying offset
ray parameter, corresponds to reflections from the same reflector segment (that is,
to the same hyperbolic reflection in the data). The combination of the operators
corresponding to this set of beams generates the gradient for the whole hyperbolic
reflection, as recorded by all the geophones in the cable. Figure 9 shows the result of
summing, with equal weights, the 12 operators corresponding to offset ray parameter
from .005 s/km to .06 s/km. The background velocity is a constant of 2 km/s and
the midpoint ray parameter is zero. Figure 10 shows a cross-section of Figure 9,
taken at a depth of 180m.
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FIG. 1. The back-projection operator GT as a function of the location of the slow-
ness anomaly at fixed reflector point, midpoint and ray parameters. The midpoint
ray parameter is zero and the offset ray parameter is .06 s/km. The operator is
spatially localized around the rays. Light areas indicate positive amplitude and
dark areas indicate negative amplitude.
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FIG. 2. A cross-section of the back-projection operator shown above taken at a

depth of 180 m. The operator is symmetric and looks like a smoothed first derivative
operator.

SEP-59



Biond: 108 Velocity from beam stacks

Midpoint (m)
O 400 800 1200

00%

(u) yiydaq
008

00c1

FIG. 3. The back-projection operator GT as a function of the location of the slow-
ness anomaly at fixed reflector point, midpoint and ray parameters. The midpoint
ray parameter is .4 s/km and the offset ray parameter is .06 s/km. Light areas
indicate positive amplitude and dark areas indicate negative amplitude.
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FIG. 4. A cross-section of the back-projection operator shown above taken at a
depth of 180 m. The operator is asymmetric.
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FIG. 5. The back-projection operator G as a function of the location of the slow-
ness anomaly at fixed reflector point, midpoint and ray parameters. The midpoint
ray parameter is .4 s/km and the offset ray parameter is .06 s/km. The background
velocity is linearly increasing with depth at a rate of 1 s~!. Light areas indicate
positive amplitude and dark areas indicate negative amplitude.
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FIG. 6. A cross-section of the back-projection operator shown above taken at a
depth of 180 m.
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FIG. 7. The back-projection operator GT as a function of the location of the slow-
ness anomaly at fixed reflector point, midpoint and ray parameters. The midpoint
ray parameter is zero and the offset ray parameter is .06 s/km. The background
velocity has a constant lateral gradient of 1 s~!. The apparent dip of the reflector
is the effect of ray bending caused by the lateral gradient in velocity. Light areas
indicate positive amplitude and dark areas indicate negative amplitude.
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FIG. 8. A cross-section of the back-projection operator shown above taken at a
depth of 180 m.
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FIG. 9. The combination of the back-projection operators corresponding to offset
ray parameters from .005 s/km to .06 s/km, but at fixed midpoint ray parameter,
reflector point and midpoint location. The midpoint ray parameter is zero. This
operator is similar to Toldi’s operator for stacking slowness. Light areas indicate
positive amplitude and dark areas indicate negative amplitude.
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FIG. 10. A cross-section of the back-projection operator shown above taken at a
depth of 180 m.
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FIG. 11. The zero-wavenumber component of the back-projection operator as a
function of depth. The function is negative because a constant increase in slowness
causes a decrease in the transformed offset £. The amplitudes are low compared to
the amplitudes of the operator itself (Figure 2).

The resulting operator is similar to a smoothed version of the operator that
John Toldi (1985) derived for stacking velocity and Paul Fowler (1988) derived for
migration velocity. Their operator is therefore functionally equivalent to a special
case of mine, when the contributions of all the beams corresponding to the same
reflector segment are equally weighted. I think that there is a trade-off between
using one operator or the other. The gradient operator for the beam-stack is more
local and has better spatial resolution than the operator for stacking velocity. On
the other hand, the computations of stacking velocity, or migration velocity, use
larger arrays than are used in computing beam-stack. The resulting estimation
of stacking velocity, or migration velocity, is more robust than the estimation of
beam-stack’s parameters.

Figure 11 shows the result of integrating along the horizontal axis the oper-
ator shown in Figure 1. The plot shows the zero-wavenumber component of the
back-projection operator as a function of depth. The zero-wavenumber component
is negative because a constant increase in slowness causes a decrease in the trans-
formed offset {. The amplitudes are low compared to the amplitudes of the operator
itself (Figure 2). Therefore the determination of the low-wavenumber components
of the slowness model using the 2-D operator is difficult. I think that one solution
for estimating the low-wavenumber component is to begin the inversion procedure
with a slowness model very smooth in the horizontal direction. At the limit the
1-D operator (Biondi, 1988) can be used. In the next section I show the result of
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the inversion of a simple 2-D model in which the 1-D operator is used for a joint
inversion of many midpoints.

RESULTS OF 1-D INVERSION OF SYNTHETIC DATA

I implemented an algorithm based on the 1-D operator for simultaneously in-
verting more than one common midpoint (CMP) gather. Although this algorithm
is inaccurate when the velocity model is two-dimensional, I think that a joint 1-D
inversion of many CMP can be a valuable tool for estimating the low-wavenumber
components of the model. I show the result of inversion of a data-set containing a
dipping reflector because in my previous report I tested the 1-D algorithm only in
the case of a horizontally layered medium.

The synthetic data was generated using a finite difference modeling program,
assuming the velocity function shown in Figure 12. For the inversion I used 12
CMP gathers, located from 300m to 480m. The maximum offset was 900m and
the geophone spacing 15m. I computed beam stacks for two values of the midpoint
ray parameter p,; one for the flat reflector and one for the dipping one. In the
offset direction I evaluated beam stacks for four offset ray parameters p,. The
starting model was a velocity function linearly increasing with depth and constant
in the horizontal direction. Figure 13 shows the result of the final iteration of the
inversion algorithm. The algorithm is limited by the 1-D assumption and therefore
it back-projected in the wrong location the velocity information contained in the
reflections originated by the dipping bed. Figure 14 shows the velocity functions at
the horizontal location of 380m. The true model is drawn with a dashed line, the
starting model with a dotted line, and the inversion result with a solid line. The
inversion correctly estimated the value of velocity in the two upper layers.

CONCLUSIONS

The gradient of energy in beam-stacks with respect to the slowness model can be
computed evaluating a linear operator relating perturbation in interval slowness to
perturbations in beam-stack’s parameters. The transpose of this linear operator is
the back-projection operator of the tomographic inversion. For one beam the back-
projection operator is spatially localized around the rays. An inversion algorithm
using this back-projection operator should well resolve velocity anomalies.
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FIG. 12. The velocity model used to generated the synthetic data. The dipping
reflector has a dip angle of 30°.
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FIG. 13. The result of the last iteration of the inversion algorithm using 12 CMP
gathers located from 300m to 480m. The algorithm is limited by the 1-D assumption
and back-projected in the wrong location the velocity information contained in the
reflections originated by the dipping bed.
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FIG. 14. The velocity functions at the horizontal location of 380m. The true model
is drawn with a dashed line, the starting model with a dotted line, and the inversion
result with a solid line. The inversion correctly estimated the value of velocity in
the two upper layers.
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APPENDIX A

In this appendix I present a method for computing the raypath and traveltime,
and their derivatives with respect to the slowness model, of a ray traveling in a
general 2-D medium. The raypath is computed by the solution of a ray-tracing
system of first order ordinary differential equations, derived from the Eikonal equa-
tion (Cerveny, 1987). The gradients are computed by use of a continuation method
(Fawcett, 1983).

Computing the raypath and traveltime

Rays are traced in a general 2-D medium with slowness function S(z,y;m),
where z is depth, y the horizontal coordinate, and m is the vector of slowness pa-
rameter. The slowness function is parametrized by use of B-spline functions(Diercks,
1975).

The rays are traced in depth solving the ray-tracing system

d
dy — pﬂ d (A-la-)

D
dp, = S(z,vy, m)iz(z,y,m)dz (A-1b)
dpv _ S(Z, y,m)iy(Z, Y, m)dz’ (A-lc)

and the traveltime is computed with the equation
_ 8%(2,y,m)dz
P '

dt (A-1d)

Here S,(z,y, m) and S,(2,y,m) are the partial derivatives of slowness with respect
to the spatial coordinates, p, is the horizontal ray parameter, and p, is the vertical
ray parameter.

The rays are traced down from the surface, thus the initial conditions are

z=0
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Y=%
p. = /5%(0, 30, m) — p3,
Py = Dobs
and
t=0,

where ps, is the horizontal ray parameter measured at the surface by beam stacks.

The ray-tracing system can be numerically solved by use of a standard Runge-
Kutta algorithm. The computation can be efficiently vectorized by the simultaneous
tracing of a fan of rays (Van Trier, 1988).

Computing the gradients with respect to the slowness model

The velocity estimation method needs the gradient of the raypath with respect
to the slowness model. This gradient is computed with a continuation method.
The differential equations in the ray-tracing system can be approximated by the
following system of difference equations:

Az

Y*(m) = y* —y*' - o (A-2a)

_, SkSkAZ
Pf(m) = pt —pt* - —oF

5*5kAz2
Pt

(A-2b)

Pj(m) =p} - p}™' - (A-2¢)

and

(S*)2Az
_ T
where Az = 2% —2z¥~1 is constant, S*, 5% and S} are the slowness and its derivatives
evaluated at the intermediate point [2" = (2* + 2F71) /2, g% = (v* + y"_l)/2], and
p% and pf are the averages p¥ = (pf + p*~1)/2 and py = (pf + pt-1)/2.

T*(m) = t¥ — ¢*! , (A-2d)

Equations (A-2) must be satisfied for all values of the slowness model m, there-
fore the derivatives of Y*(m), Pf(m), and P¥(m) with respect to the slowness
model are zero. These derivatives with respect to the model parameter m; can be
expanded with the chain rule as

aY*  9Y* gy* Yt gyt + aY* 9pF  aY* opk
6m,~ - By" 8m,~ ayk“l Bm,- 61‘)",‘ 6m,- 31‘)",‘ 6m,-

=0 (A-3a)

dP,* 8P*adp,* OP* 9p ' OB}k opt
om; dpt Om;  Apt-1 Im; apr Om;
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dP,*a5* oPr*oSk 0

i X = -3b
a5* 9m; | 5% om, (A-3b)
oPt oPropt OPF opt! N AP, opt
am; Opt Om; ~ Opt-1 om, apt om,
k ATk k asvk
P83+  OR*OS; (A-30)

8S"= 6m,~ 65’; 8m,~ -

Evaluating all the partial derivatives in equations (A-3) it is possible to ob-
tain a system that can be sequentially solved at each step k for the derivatives
dy*/dm;, 8p.*/dm; and dp,*/dm;, when the derivatives at the previous step k — 1
are known. Equations (A-3) are not independent, and therefore a system of three
equations in three unknowns must be solved at each step. The three equations
can be solved sequentially after these terms are dropped: those that depend on the
second derivatives of slowness with respect to the spatial coordinates, and those
terms that depend on the product of two first derivatives. It is possible to drop
these terms because the slowness function is assumed to be smooth. After these
approximations and some simplifications, equations (A-3) become

ayk B ayk—l N ﬁ 3pyk apvk—l _ I—,:AZ apzk apzk—l (A 43)
dm; ~ Om;  2pt \Om; = Om; 2(p¥)? \ am; = omy i
dp,* 1 S*S;Az\  dptt (. S*SEAz
om; 2005 ) omy 2(pk)?
SkAz 8S,(2,y, 5*Az 8S(z,v,
A z (2,y,m) 1 54 z 85(z,y,m) (A-4D)
Pz omi ey P Omi ey
dp,t opt!  StAz 3Sy(z,y,m) SFAz 35(z,y,m)
om; _ Om, T om, T om;
t ] pz s (2,7) pz % (Z,ﬂ)
SESEAz (9p,k  Opt!
Y P P . (A-4c)
2(p*)2 \ om; om;

Equations (A-4) can be solved sequentially: start from equation (A-4b), follow with
equation (A-4c), and then equation (A-4a). The initial conditions at the surface

are;
9y° _

am,-
apzo _ S(O, Yo, m) BS’(O, Yo, m)
om; \/52 (0, o, m) — p2,, om;

0 (A-5a)

(A-5b)

(O,VO)
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Opy _, (A-5¢)

Once the gradient of the raypath with respect to the slowness model is computed,
it is easy to evaluate the gradient of traveltime. Differentiating equation (A-2d) I

obtain the equation
ok k k-1
dy dy
A —
+ 2 (am,- + am; )]

ok _ okt 25*Az [3S(z,y,m)

om; am; 1’7’; am; (2.9)
(5%):Az (9p,* N dp, 1 (A-6)
2([_32)2 om; om; ’

which can be used to evaluate sequentially the traveltime derivatives.

Tracing rays downward or upward 7

The theory presented at the beginning of this paper requires the rays be traced
from each reflector point up to the surface. In practice it is more efficient to trace
the rays downward and couple them at each depth level. The raypath is independent
from the direction of propagation but the gradients are not. Equation (A-4b) and
(A-4c) must be solved starting from the surface because the initial conditions are
specified at the surface, where the horizontal ray parameter is measured. Equation
(A-4a) can be solved either way. Between two specified depth points the solution
have the same magnitude but opposite sign. Therefore the only term that is really
affected by the direction of propagation is the gradient of traveltime. In particular

the term .
S_” ayk N 3yk—1
2 6m,~ am,'

depends on the direction of propagation. I ran some practical test to study quan-
titatively the importance of this term; as a result I have decided to ignore it in the
computation of the gradient of traveltime with respect to the slowness model.
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