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Unique solutions for 1, problems

Lin Zhang, Joe Dellinger & Francis Muir

ABSTRACT

The [, solution to a set of overdetermined linear equations is unique if p > 1,
but may not be if p = 1. We resolve this ambiguity by defining an /,+ solution
which is the limit of /, solutions over p as p — 1 from above. This solution is
unique and in the l; solution set. We present a conceptual algorithm to find
this solution, and illustrate the method with two examples.

INTRODUCTION

Claerbout and Muir (1973) have given numerous examples to show the ad-
vantages of the absolute value norm over least squares for solving overdetermined
systems of linear equations. Renewed interest in travel-time inversion methods for
statics and velocity estimation problems has encouraged the development of new
techniques for computing [/, solutions. Scales et al. (1988) have reviewed recent
work in this field. They describe a fast and stable iterative [/, algorithm for sparse
systems and apply it to seismic travel time tomography using p = 1.

{; solutions

The l; norm is robust in the presence of large data errors, and is thus the norm of
choice for certain kinds of problems. But an objective function based on this norm
does not necessarily have a unique minimal solution. From a computational point of
view this is troublesome. Among all the possible solutions we do not know which we
are going to get, and different versions of the same algorithm may produce different
solutions. Although all the solutions give the same minimum error measure, it is
reasonable to redefine the problem by adding extra conditions and come up with
an unambiguous solution.
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l;+: the end of the line

We choose the limit of I, solutions as p goes to 1 from above. This limiting
solution exists, is unique, and lies inside the original /; solution set. Dellinger
(1984) worked on this notion in the one-dimensional case and used it to compute
the unique median of a set of real numbers. He showed that the solution can be
obtained first by finding the line segment that covers the set of absolute value norm
solutions, and then solving a non-linear equation in that segment. We extend this
result to many dimensions. We first find the convex region defining the [; solution
set, and then solve a set of non-linear equations within that region.

Organization

We organize this paper in the following way. First we review l, problems. Then
we discuss the convexity of the objective functions and give a formal definition of
the limiting solution. Then we discuss the uniqueness and existence of the solution,
and follow this with a conceptual algorithm. Finally, we illustrate the method with
two examples.

REVIEW

In seismic data processing, many problems can be formulated as a set of over-
determined linear equations

Ax =d, (1)
where ]
[ @11 @12 ... Gim
g1 Q22 ... Q2m
A = ,
Lapt Ap2 ... CGpy |
( I T [ dl T
T2 d,
X = ) and d=
.xm. -dna
The error vector is
e=d— Ax. (2)

The solution is the vector x which minimizes the magnitude of the error vector
as measured by some well-defined objective function. The exact concept of what
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a large error is depends on the particular objective function used. The objective
function should have a single global minimum in order for the problem to have a
unique solution.

The definitions

Let v be a vector in an n-dimensional space. For any p > 1

B, (v) = (ZII) (3

defines the I, norm of v, where v; is the sth component of the vector v.

l, optimization problems

The objective function is often chosen to be the [, norm of the error vector. The
solution to such an [, optimization problem is defined as

x, = {x | minE,e) } (4)

for p > 1.

For different p values, the objective function emphasizes different aspects of the
error vector. p = 2, least squares, is seemingly ubiquitous in seismic data processing,
but the extremal cases, p = oo and p = 1, find use for certain problems. The I
norm measures the maximum error. The /; norm is especially good for problems
with erratic data because of its robust properties. As previously stated, there is a
problem in using the /; norm because the objective function does not always define
a unique solution.

The non-uniqueness can be removed by adding extra constraints. We choose a
solution that is equal to the limit of x, as p — 1 from above. Mathematically

X+ = pl_igl+ Xp, (5)

where X, is defined in equation (4). We call this the limiting solution, and will show
that this limiting solution is in the l; solution set. It should be remembered that
the limit must be taken after the minimization.

Convexity of objective functions

Before discussing the existence and uniqueness of the solution, we will state
several results on the convexity of objective functions.

For p = 1, E,(e) is a convex upwards function of x. Solutions always exist but
they may not be unique. All the solutions, however, lie in one convex region. This
means that any linear combination of solutions is also a solution.
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If the system is over-determined, i.e. the column rank of matrix A is full and
there is no precise solution because the data are inconsistent, then the objective
function E,(e) for any p > 1 is always a strictly convex upwards function. We will
always have a unique solution for [/, problems for every p > 1. To show the existence
and uniqueness of the limiting solution, the remaining question is whether the limit
in equation (5) exists.

LIMITING SOLUTION

For any strictly convex upwards function, the necessary and sufficient condition
for a point to be the global minimum is that all its partial derivatives are continuous
and zero at this point. Clearly, according to the conventional definition, the partial
derivatives of our objective function for p = 1 do not always exist. We need to have
a special definition of derivative so that we can always compute the derivatives of
our objective function for any p > 1.

The directional derivative

The directional derivative of f(x) at x in the direction u,whereju| = 1, is de-
fined as

— hl_i'I(I)1+ f(x + hl;l,) — f(x) . (6)

fu(x)

Now we state the theorem, which is easy to prove.

Necessary and sufficient conditions

Let f(x) be a strictly convex upwards and continuous function in the domain
R". Then x is a global minimum if and only if the directional derivatives of f(x)
at X, in all directions are > 0.

Existence of the limit

We rewrite definition (3) into the form of vector components:

om 7\ »
d,' - Z ai; Ty ) . (7)
j=1

The directional derivatives of E,(e) exist for any p > 1 and are

n

E,(e) = (Z

=1

1

| 5

=1 \s=1

n

[Ep(e)la = [E

=1

m

di — ) ai;z;
7

1

di — Y aij (z; + hu;)

i=1

lim
h—0t 3
=1

sgn (de - f: a;; (z; + hu:‘)) - (8)
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The theorem states x, is a minimum of E,(e) if and only if, for any unit vector

u,
> ( ——a,-_,-uj) ;.l_i.IcI)l+ sgn (d; = > aij (zj + huj)) >0 (9.a)
i=1 \j=1 i=1
for p=1, and
> (Z ——a.-_.,-u_,,-) d; — ) aizjp|  sgn (d.- -2 a,-,-x,-,,) >0 (9.5)

for p > 1, where

d,' 75 Z a,-_,,-:z:]-p } .
i=1

r-{:

From the convexity of E,(e) we know that for every p > 1 there always exists
a unique X, such that the above inequality holds. We show that x, is a continuous
function of p for p > 1 by the following argument:

Suppose 6 is a small real number such that p+ 6 > 1. Let x,,5 be the solution
using the norm /5. Then

> (f: —as‘:‘“:')

i€ER \j=1

p+6—1 m
sgn (d, - Z a,-jsz+5) > 0. (10)

i=1

m
di = D @iiTipes
i=1

Now let § — 0*. The limit of the left hand side should also be greater or equal to
zero, and therefore

> (f: —afjuf)

i€R \j=1

r—1 m
sgn (d.- — Z a.-,-:z:,-p+) > 0. (11)

=1

m
di =D aiTjpt
i=1

Thus x,+ is also a solution using the norm /,. By the same argument, we can show
that x,- is also a solution. We conclude that

Xpt = Xp— = Xp, (12)

because of the uniqueness of the solution. By Cauchy’s convergence condition, xp
has a limit as p — 1*. So the limiting solution exists and is unique.

Where is the limiting solution?

We will show that the limiting solution is in the region where the absolute value
norm F;(e) reaches its minimum value. That is, the limiting solution is also a
solution for the !; norm.

The limiting solution satisfies the inequality (9.b) as p — 17,

Z (zm: —a,-ju_,,-) sgn (d, - i:a.-,-zjﬁ) 2 0, (13)

t€ER \j=1
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while

2 (Z —a,-,-u,-) Jim sgn (d,- =2 (zjn+ + hu:‘))

i=1 \j= i=1
_ z(z ) sen (ca za.,z,1+)+z $ o

t€ER tZR |7=1
> 0. (14)

This shows that x;+ satisfies inequality (9.a) and thus that it is a solution for the
l; norm.

A conceptual algorithm

The limiting solution is somewhere in the convex region B where the [, norm
achieves its minimum value. Generally B is in an m-dimensional subspace of an
m-dimensional space. Within B, x has only m independent components. The rest
of the components are linear combinations of these components. Without loss of
generality, we assume the first /1 components of x are independent in B. Then we
have

EZYSh [ci1c1z ... e1m ] [ 21] [ by ]
ITt2 C21 C22 ... Com T2 hs

= + , (15)
L Tymp [ Cn1 Cn2 ¢+ Cnmd LZTxh L A, |

where ¢;; and h; are constants.

Substituting these relations into equation (7), we have

L
— 2 by

i=1

By (e) = (Z a

=1

) g (16)

= Z Gimtkhe and & = aij — D GimikChi-

where

So the limiting solution of equation (1) is also the limiting solution of the new linear
equation set in the convex region B.

We know that throughout B, Ej(e) is equal to its minimum value, therefore

31: E a,;,,) sgn d,' - Z Qi; Ty =0 (17)
J

$= i=1

-

for each k = 1,2,...,M. Clearly for each ¢ the sign function is constant within B.
Therefore E,(e) has continuous partial derivatives for each p > 1. We conclude that
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X, is the solution of the /, norm in B if and only if all these partial derivatives are
equal to zero. Thus

p—1

1 (—@ix)

n
1=

sgn (Zi. — Z &,‘j.’l?j) =0. (18)
i=1

R h
di — ) ijz;
i=1

As Dellinger did for finding the median of any set of numbers, we can show that
the limiting solution x,;+ satisfies the nonlinear equations

" Bk s 8k
11 (& - &ijxj1+) =11 (df > &fi“’fl+) ; (19)
¢ j=1

icRt Jj=1 i€ER-

for k =1,2,...,m; where

d,' > Z&;j$j1+ } 3

1
Qi T+ } .

1. Find the convex region B within which there are / independent components.
Express the dependent components as linear combinations of these indepen-
dent components.

=y
+
I
——
-,
“

and

s

R‘={z‘ d; <

.
il
-

Now we have a conceptual algorithm:

2. Substitute these relations into equations (16) to obtain a new linear equation
set.

3. Solve the nonlinear equation set (19) to obtain 7 independent components.

4. Use equation (15) to determine the rest of the components.

EXAMPLES

Let us look at two simple examples for the 2D case.

Example 1
We have equations
01 1
111z |1
12 [y} 1
20 1
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The convex region B is defined by

11 1
= ==, -<y< Dy,
B {(z’y) ’x 2'4 <Y 2}

Substituting z =1/2 into the equation we obtain

1

[y]=

O N =
fan W XIT XN Y

Equation (19) gives

1)’ = (-2) .

Solving this equation, we obtain two possible roots,

1++/13
Yy=—5—

12
but only the positive one is in the region B. So we have the limiting solution
1
T2
1++/13
v= T2

Figure 1 shows contours of E;(e) and the limiting solution for this example.

Example 2

We have equations
1 0 1
o 1|[z]_ |1
2 -1 [y] {0
1 -2 0
The convex region B is defined by

B = { (z,9)

Equation (19) gives

% < z < min{2y,1} and g <y< min{Zx,l}}.

(2z —y)® = (2y—z)(1—2)
2z —y)™! = (2y—:c)_2(1—y).

Solving these equations, we obtain the limiting solution,

r =

DO = DN =
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FIG. 1. Contours of the ob-
jective function E(e) from ex-
ample 1. The fat line seg-
ment shows the convex region
B. The small square indicates
the location of the limiting so-
lution within B.

FIG. 2. Contours of the objec-
tive function F; (e) from exam-
ple 2. The stippled area bor-
dered by a thick line shows the
convex region B, and the black
square within it indicates the
location of the limiting solu-
tion.
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Figure 2 shows contours of Ey(e) and the limiting solution for this example.

SUMMARY

In this paper, we have shown that the limiting solution we defined is a solution
for the l; optimization problem. It is unique and always exists. We can compute
this solution by finding the region where the absolute value norm is minimum and
then solving a set of nonlinear equations in this region. The algorithm given is
conceptual, so work remains to be done to develop a practical algorithm.
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