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Symbolic manipulation of layered media

Dave Nichols and Rick Ottolins

ABSTRACT

Fundamental properties of elastic media based on the Schoenberg/Muir cal-
culus can be studied using the symbolic mathematics program Mathematica.

INTRODUCTION

Schoenberg and Muir (1988) described a group-theoretic method for manipulat-
ing the elastic properties of layered and fractured media. Nichols (1988) presented
a computational toolkit that implemented this theory. This gave numerical results
from the manipulation of model layered media. However there are still implications
of the theory that cannot be investigated using numerical examples. The tedious
algebra required to prove any general results using the Schoenberg/Muir method
has prevented much progress in this direction.

The symbolic mathematics program Mathematica™ (Wolfram, 1988) was re-
cently released for the Macintosh computer it is described as “A system for doing
mathematics by computer”. We have implemented Nichols (1988) layer modeling
toolkit in Mathematica. It can be used to manipulate symbolic equations that
would be difficult to do by hand.

We first introduce Mathematica. Next we show some examples of the implemen-
tation of the Schoenberg/Muir calculus. Finally we show some basic results about
the properties of elastic media and suggest some possible further investigations.

A BRIEF INTRODUCTION TO MATHEMATICA

Mathematica is a very flexible program and can be used in many ways. At its
simplest it can be used as a calculator, the user enters calculations using a text
interface, if you enter 2 + 2 you get the response 4. However you are not limited
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to entering numbers, the operands in any calculation can be symbols as well. If you
enter ¢ = a + b you get the response a + b, if you then enter d= 2 ¢ you get the
response 2 a + 2 b. Mathematica has remembered the definition of ¢ and used it
to define d.

You can also type calculations using one of the many predefined functions. If you
type Sin[Pi/6] you get the response 0.5. Mathematica also supports calculation
on arrays, arbitrary precision arithmetic, 3-D plots of calculation results, and most
importantly it allows you to define your own transformation rules and functions.

Mathematica has many built in rules for solving equations and predefined func-
tions. It has a function TrigReduce[] that attempts to reduce the complexity of
an expression by applying rules about trigonometric functions. One of the rules
that is used is Sin[ x_ + y_ ] :> Sin[x] Cos[y] + Cos[x] Sin[y] . When this
rule is applied any expression of the form on the left hand side is converted to the
form on the right hand side. The terms x_ and y_ can be anything, a number, a
polynomial, another function etc. In general Mathematica operates by matching
patterns within expressions so the rule shown matches a Sin[] where the operand
is two expression separated by a plus sign. Other functions in Mathematica can be
used to factor or expand polynomials to simplify expressions, differentiate etc.

A program in Mathematica is a set of rules. When you type in an expression
Mathematica goes through the rules applying all those that are valid. When nothing
further can be changed the “program” is finished. It is possible to get caught in
a loop in Mathematica so it checks whether you are repeating the same functions
with the same arguments and stops if you do this too many times.

Specifying rules in Mathematica

Mathematica stores sets of rules and functions related to a particular topic
in a “notebook”. In order to use the rules in a notebook you just read in the
notebook before starting your session. Notebooks allow you to write your function
definitions and documentation in “cells” you can then group your cells into sensible
sections and subsections. If you choose you can hide all the cells containing function
definitions so that only the documentation shows. Appendix II is a listing of the
Schoenberg/Muir notebook documentation and two of the definition cells shown.

To specify your own functions you need to specify a pattern to be matched and
a function that is evaluated when that pattern is found. If you specify

filx_]:=(2x+1)
then all any time you evaluate an equation containing
f[ some expression |

it will be replaced by
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( 2 * your expression + 1 ).

This method of evaluating expressions is very flexible and you can write Math-
ematica programs in many different styles. In the Schoenberg/Muir notebook we
have chosen to write the rules in a style similar to object oriented programming.
We define rules that apply only to a certain type of object. We define one type of
object, a layer, as being a list of five objects :

1. The layer thickness
2. the layer density

3. The C,, submatrix
4. The C,; submatrix

5. The Cy submatrix

Appendix II contains a brief refresher course on the Schoenberg/Muir calculus
and definitions of the symbols used.

In our notebook a layer has the form : Layer|[ list of components |. The
function to rotate a layer about the z-axis is then defined as :

Layer\: RotateZ[ Layer[ x_ ] , angle_ ] := { function definition }

The first “Layer\ :” defines this function as belonging to the group of functions
dealing with layers. The pattern to be matched is a call to RotateZ where the first
argument is a layer and the second argument is anything. This function definition
will not be applied unless you give it a layer as an argument. You can supply
another definition of the function that is valid when some other type of object is
supplied as an argument.

One of the nice features of Mathematica is that you can redefine the standard
mathematical operators. The function to.add two objects has the form Plus[ a_, b_ ].
If you type 2+2 Mathematica internally stores it as Plus[ 2 , 2 |. We have rede-
fined the Plus function for layers so that when two layers are added they are added
in the in the Schoenberg/Muir sense. If you type a+b and both a and b are layers
our new definition of add will be used. The definition looks like this:

Layer\: Plus[ Layer[a_]l, Layer[b_] ] :=
GtoL[
LtoG[ Layer[a] ] + LtoG[ Layer[b] ]
]
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This should be interpreted in the following way, if asked to add two layers,
first map them to the group domain, then add the two groups, take the result and
map back to the layer domain. When evaluating expressions Mathematica first
looks for a specific definition of each function if it doesn’t find one it looks for a
general definition of the function. In this way our definition of addition overrides
the default definition that would just have added corresponding elements in the list.

EXAMPLES OF SYMBOLIC CALCULATIONS
Adding layers
The commands :

a = MakeLayer| z1, rhol, LameMatrix[ lam1, mul, mul | | ,
b = MakeLayer[ z2, rho2, LameMatrix[ lam2, mu2, mu2 ] |,

create two isotropic layers. They are combined using the command :
c=a+b,
this produces a complicated expression which is simplified using the command:
d = Simplify[c].
We can test to see if the new layer is transverse isotropic using the command :
IsTI[ d ].

However this gives a long symbolic result so we use the Reduce[] command to
reduce the result to its simplest form.

Reduce[ IsTI[d | ],

gives the result True so we have shown that the result of combining any two sets
of isotropic layers is a medium with at least transverse isotropic symmetry.

The printout of the layers can be formated for TEX output using the command
TeXForm(] . The output is often not immediately usable in a TgX document like
this one but it takes very little effort to edit it to a suitable form. The first two
layers, a and b, have the following layer properties,

layer a
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thickness = z;

density = p
Ar+2u1 A A1 0 0 0)

A1 AL+ 2p A1 0 0 O
A]_ Al Al + 2[1,1 0 0 0
0 0] 0 g 0 O
0 0 0 0 wmm O

\ 0 0 0 0 0 u )

layer b

thickness = 2z

density = p,

( Az + 2[112 Az Ag 0 0 0 \
Az Az + 2u, Az 0 0 O
Az Az A2+2u3 0 0 O
0 0 0 ue 0 O
0 0 0 0 uz O

\ 0 0 0 0 0 wu; j

The combined layer, d, has a very complicated elastic matrix, printed below are the
formulae for the thickness and density and the upper left term of the elastic matrix.

layer d

thickness = z; + 23

density = ﬂfﬁf’;’ﬂ

4pypozi 2 H4py 2y 2o tapg®z 2o+ 4p paza 2 A1 A2 (21 22) 22 (2#121 244poziza+2i 222) +Ay (2M221 2+4M12122+2u2222)
(z1+22)(A2214+2u221+ A 1224241 22)

If we assume the two sets of component layers have the same thickness we can
set both 2; and 2, to one. We do this using the commands,

zl1 =1,
z2 = 1.

This simplifies the elastic matrix for layer d to ,
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layer d
thickness = 2

density = “—'.E&

( 2(M+prt+p2l(A2+pa+p2)
A1+Az+2u14+2u2

22122+ +FAzui+ A patAzug
A1+Az+2p1+2u2

2(M 122+ d2p1+A1p42)
A1+Az+2p3+243

0

0

\ 0

The symmetry property of transverse isotropy

The command :
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a = GenTI[ c |,

22322+ Agp1+HA et Azug 2(A1A2+A2F1+A1ﬂ2) 0 0
Art+A2+2u142u2 Ar+Az+2u14+242
2(Ma+p1+p2)(Aa+p1+ps) 2(X1da+A2p1 421 pg) 0 0
A1+Az+2u1+2u2 A1+Az+2u1+2p2
2(Axd2+Az2p1+A1p42) 2(A1+2p1)(A2+2p2) 0 0
ArtAz+2pu14 262 A1+Az+2u1+2p2
2p1p2
0 0 p1t+p2
2pypo
0 0 0 p1tp2
0 0 0 0

Creates a generic transverse isotropic elastic matrix using the symbol “c” for the
independent constants ( i.e. ¢12, 6, €13, €44, Co6 )- The layer is rotated “th”
degrees about the Z-axis, the axis of symmetry, using the command :

b = RotateZ| a, th ]

Again we get a result that needs simplification, we use two commands :

d = Simplify[ b |,

e = TrigReduce[ d ],

to simplify the result. The first command performs algebraic simplification, the
second simplifies trigonometric terms. We get a result that is the same as our
starting elastic matrix. We can check this using the command :

e ——a,
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which returns the result True . This shows that a transverse isotropic elastic matrix
is invariant under rotation about the Z-axis.

Fracturing a layer

In this example we take a generic transverse isotropic layer and fracture it with
vertical cracks in the plane of the X-axis. This is done by rotating the elastic
constants 90 degrees about the X-axis, fracturing the layer horizontally, and rotating
the elastic constants back to the original frame. The fracturing is done using the
Schoenberg/Muir model, a fraction “ex” of the third group element of the second
layer is added to the third group element of the first layer. The commands :

a = MakeLayer| z, rho, GenTI|c] ]
b = RotateX] a, 90 ]
d = SMCrack[ b, b, ex |
e = Simplify[d]
f = RotateX] e, -90 ]

give the resultant layer, f . We can first check if the layer is transverse isotropic.
The command :

Reduce| 1sTI[ fl],

gives the result ==0 || ex == 0 . This means that the layer is transverse isotropic
if all the coefficients are zero or the parameter ex which controls the amount of
fracturing is zero. The transverse isotropic layer retains its symmetry only if there
is zero fracturing. We can also test to see if the layer has orthorhombic symmetry :

Reduce[ IsOrth[ f ] ].

This gives the result True , showing that any transverse isotropic layer with any
amount of vertical fracturing ( in the Schoenberg/Muir sense ) has orthorhombic
symmetry.

LIMITATIONS

We are currently running Mathematica on a Macintosh II computer with 5
megabytes of memory. If we try to do more complicated symbolic calculations
than those shown here we hit the memory limit on our machine. Mathematica will
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be released soon in versions for other computers, the Sun workstation version has
already been demonstrated. When the Sun version becomes available we will not
have memory problems because the Sun has a virtual memory operating system.
Our only limitation will be the length of time we are prepared to wait to get results.

CONCLUSIONS

Mathematica is a very flexible symbolic mathematics program that has enabled
us to prove some well known results about anisotropic media. We cannot continue
this work to prove new results until we have more processing power and memory
available. When we are able to continue we intend to prove some results about
multiply fractured media, and investigate the relationships between various models

of fracturing. .
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APPENDIX I : Schoenberg/Muir calculus for layered media

The method used is that outlined by Muir in SEP-56 and more fully described
by Schoenberg and Muir (1988) and Muir and Dellinger (1988). The calculation of
the properties of layered media is related to the work of Backus (1962) and gives
the equivalent elastic properties of a layered medium for layering much finer than
the seismic wavelength.

Hooke’s law for a general elastic medium can be written as,

[01] €11 €12 €13 €14 €15 C16] (61'
% €21 C22 C23 C24 C25 C26 €2
O3 | _ |31 €32 C33 C34 C35 C36 €3
04 C41 C42 C43 C44 C45 C46 €4
Os Cs51 C52 €53 Cs54 C55 Cs6 €5

L O¢ L C61 C62 Ce3 Ce4 Co5 Ce6 L €6
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where L o o .
o1 o11 €1 [ €11
02 O22 €2 €22
O3 O33 €3 €33
= and =
oy O3 €4 2€33
Os 031 €5 2€3;
| 06 | [ 0132 | [ €6 [ 2¢€12 |

are the stress and strain tensors written in the abbreviated subscript notation.

Schoenberg and Muir (1988) and Muir and Dellinger (1988) show that if the
following 3 x 3 matrices are defined for the #** component of a layered medium,

C33; C34; C35;
» CNN;, = | €34, Ca4; Cus;
C35; C45; Cs55;

Crr, =

13

C12; C22; C26;

lcu,- C12; C1e;
C16; C26; Cé6;

€13; Ci14; C15;
s CNT.- = C23; C24; C25; y

C36; C46; C56;

the total thickness of all layers of the :** constituent in the composite is H; and its
density is p;, we can define the following transformation to ‘group’ coordinates,

G: = [g(1), g:(2), 8:(3), 8i(4), 8i(5)] of two scalars and three 3 x 3 matrices.

The mapping is given by

H.' g,-(l)
H; p; 9:(2)
H;Cyj, - | &B) |,
H; Cyr, i, gi(4)
H;[Crr, — Cnr,Cyn,Clir; | g:(5)

For any G; such that g;(1) # 0 and g;(3) is invertible, we can return to the set
of physical model parameters by the ‘inverse group mapping’ from group element
G; to physical model. This inverse mapping is given by

9:(1) H; ]
g:(2)/9:(1 Pi
gi(1)gi(3)~ — | Can,
g:(4)g:(3)™1 Cnr;
[2:(5) + 2:(4)2:(3)1g:(4)7) /i (1) Crr, ]

The group has been chosen in this way so that adding the respective scalars
and matrices for all constituents of a layered composite and performing the inverse
group transformation will give a set of elastic constants that is the long wavelength
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equivalent elastic medium.

The method of calculating the properties of fractured media is that described
by Schoenberg and Douma (1988) which is shown by Schoenberg and Muir (1988)
to correspond to increasing the third group element. A set of fractures is defined
by a symmetric 3 X 3 matrix that is added to the third group element of the rock

to be fractured.

APPENDIX II : Schoenberg/Muir notebook

MAIN DEFINITIONS:

layer = MakeLayer [ thickness, density, elasticMatrix ]
c=a+b

a=c-a

¢ = SMCrack [ a, b, excess ]

b =Rotate{ XYZ}[ a, angle ]

IsTI[ a]

IsOrth[ a ]

Show [ a ]

Utilities:

elastic matrix = GenTI[x]

elastic matrix = GenOrth[x]

elasticMatrix = ImpedanceMatrix [ density, P_velocity, SV_velocity, SVh_velocity ]
elasticMatrix = LameMatrix [ lambda, mul, mu2 ]

To load:
<<Schoenberg/Muir.m

Layer: 5-element list: z, rho, Cnn, Cnt, Ctt.

MakeLayer []: generator

LtoG[] : map layer to group representation
Rotate{XYZ}[] : rotate the elastic constants for a layer

+ : combine layers according to group theory

- : remove layer according to group theory

SMCrack []: crack a layer using Schoenberg/Muir method
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IsTI[] : test if transverse isoiropic

IsOrth[] : test if orthorhombic

ElasticMatrix[]: get the elastic matrix for a layer
Show[]: formatted printout of layer

(* make layer list *)
MakeLayer [ z_, rho , c¢_ ] := Layer[ {
z,
rho,
NMatrix{ ¢ 1.,
PMatrix[ c 1,

MMatrix[ c ]
} 1

(* map layer to group representation *)
Layer/: LtoG [ Layer[layer ] ] := Group[ {
layer[[1]],
layer[[1]] layer[[2]],
layer[[1]] Inverse [layer[[3]]],
layer([[1]] layer[[4]] . Inverse [layer[[3]]],
layer[[1]] (layer[[5]] - layer[[4]] . Inverse [layer[[3]]
Transpose [ layer[[4]] 1)
} o1

(* See if a layer is Transverse Isotropic *)
Layer/: IsSTI [ Layer[layer ] ] :=
ISTI[ -
ElasticMatrix[ Layer[layer] ]
]

(* See if a layer is orthorhombic ¥*)
Layer/: IsOrth [ Layer[layer ] ] :=
IsOrth [
ElasticMatrix[ Layer[layer] ]
1

(* rotate the elastic constants for a layer ¥*)

Layer/: RotateX[ Layer[x_], angle ] :=
MakeLayer[ x[[1]],
x[[2]1,
RotateX][
ElasticMatrix [ Layer([x] ],
angle
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Layer/: RotateY][ Layer([x_], angle ] :=
MakelLayer[ =x[[1]], -
x[[2]],
RotateY][
ElasticMatrix [ Layer([x] ],
angle

1

Layer/: RotateZ[ Layer[x ], angle_ ]
MakeLayer[ x[[11],
x[[2]11,
RotateZ[
ElasticMatrix [ Layer([x] 1],

angle

]

(* format layer list *)
Layer/: Show [ Layer([x ] ] :=
TableForm [ {
{ "Layer" },
{"z=", x[[111},
{"rho=", x[[2]]},
Ta=" ,
MatrixForm [
ElasticMatrix [ Layer[x] ]
]
} 1

(* extract the elastic matrix *)
Layer/: ElasticMatrix[ Layer[ a_] ]:=
FullMatrix [
a[[3]],al[4]1]1,al[5]]
]

(* combine layer ¥*)
Layer/: Plus [ Layer[a ], Layer[b ] ] :=
GtolL [
LtoG [Layer[a]] + LtoG [Layer[b]]

1

(* uncombine layer ¥*)
Layer/: Subtract [ Layer([a_], Layer[b ] ] :=
GtoL [
LtoG [Layer[a]] - LtoG [Layer[b]]
1
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(* crack layer in Schenberg/Muir sense *)
Layer/: SMCrack [ Layer[a ], Layer[b_] , excess_ ] :=
GtoL[
SMCrack[
LtoG[ Layer([a] ], . I

LtoG[ Layer[b] 1,
excess

n
Group: 5-element list: g1,g2,23,84,85 of anisotropic Abelian group

GtoL []: convert group to layer

+  combination operator for Abelian group

- removal operator for Abelian group(* make layer list *)
Show []: formatted printout of group.

SMCrack []: crack a group using Schoenberg/Muir method

(* map from group representation to layer*)
Group/: GtoL | Group[g_ ] ] := Layer[ {
gll1ll],
gll2]] / gll1]11,
gl[1]] Inverse [g[[3]]],
gl[4]] . Inverse [g[[3]]],
(g[[511 + g[[4]] . Inverse [g[[3]]] . Transpose [g[[4]]])

/ gll[1]]
} 1
Group/: Plus] Group[a_], Group[b_ ] ] := Groupl[a + b]
Group/: Minus][ Group[a ] ] := Group[-a ]
Group/: Subtract] Group[a_] ,Group [b_]1] := Groupl[a-b ]

(* format group list ¥*)
Group/: Show [ Group[x ] ] :=
TableForm [ { -

{ "Group" },
{"g(L)=", x[[1]1]},
{"g(2)=", x[[2]]},
"g(3)=",
MatrixForm [

x [[3]]
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1,
"g(4)=",
MatrixForm [

x [[4]]

1,
"g(5)=",
MatrixForm [

x [[5]]

1
} 1

Group/: SMCrack[ Group[a_], Group[b_], excess_ ] :=
Group[{ a[[1]l], all2]] ,
a[[3]] + bI[3]] * excess ,
a[[4]1]1,alIl5]1] }]

m ElasticMatrix = 6 by 6 array. { Object type: Elmat }

LameMatrix []: generator

ImpedanceMatrix []: generator

GenTI[x] : generate a generic TI matrix using the symbol x.

GenOrth[x] : generate a generic orthorhombic matrix using the symbol x.
Transform[] : apply coordinate transform

ISTI[] : test if transverse isotropic

IsOrth[] : test if orthorhombic

Rotate{ X'YZ}[]: rotate the coordinate frame

TnsrForm([] : convert to a rank-4 tensor

Submatrices: M, N, P 3 x 3 arrays from ElasticMatrix.
MMatrix []: generator

NMatrix []: generator

PMatrix []: generator

FullMatrix [}: regenerate elastic matrix from submatrices

[
low level utility functions

n
€ITor MESSages
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