Chapter 4

Predicting and inverting migration velocities

4.1 INTRODUCTION

In the preceding chapter I described how to find a linear operator relating per-
turbations in interval slownesses to the resulting perturbations in prestack time-
migration velocities. Migration velocities can be measured from data using the
methods of the chapter 2. The desired goal is then to invert the linear operator of
chapter 3, solving for interval velocities by using the observed migration velocities as
data. However, such an inversion can be no better than one’s knowledge of the
artifacts, errors, and limitations of the method; it is easier to set up ‘“black box”
inversion schemes than to know how much to trust the purported answers they pro-
vide. Thus, I devote most of this chapter to synthetic modeling, using the linear
operator to predict migration velocities from interval velocities, and to inversion,
using singular value decomposition of the operator to analyze the resolution limits
and to illustrate the expected artifacts. To analyze field data, one must go beyond
the linear inversion to nonlinear inversion, using the linear operator to define a gra-
dient direction for iteratively improving an initial model. In section 4.5 I discuss how

to formulate such a nonlinear inversion algorithm.

4.2 PREDICTING THE EFFECTS OF SLOWNESS ANOMALIES

The operator G, derived in chapter 3 predicts changes in migration slowness
for specified perturbations in interval slowness. How good are these predictions? To
test this, I created simple structural models, introduced slowness anomalies, and gen-
erated synthetic data using finite-difference modeling. 1 then created migrated
images using the velocity-space DMO and migration algorithm of chapter 2, and
measured the slownesses at which the images had maximum energy. These results
can then be compared with the slownesses predicted using the G, operator applied

to the model slowness perturbations.
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Flat bed example

Figure 4.1 shows a slowness model containing a flat bed, and above it, a circular
anomaly in the background slowness. The slowness in the upper layer is 0.5 s/km,
and that in the lower layer is 0.33 km/s. The slowness anomaly has a peak value of
0.476 s/km at the center, and decays as a Gaussian function to the background of
0.5 s/km. This anomaly is chosen to be very smooth, so that it affects only
transmitted waves; reflections from the anomaly are extremely weak. The zero-offset
synthetic data from the finite-difference modeling are shown in Figure 4.2. A cable
length of 1 km is used in the modeling; the model is 4 km long, and the reflecting
bed is at a depth of 2 km.

The migration slownesses measured along the flat reflecting bed are shown as
stars in Figure 4.3; because the bed is flat, the migration slownesses are equal to
stacking slownesses. The slownesses predicted using the operator of chapter 3 are
overlaid as a solid curve for comparison. The predicted values fit the data well,
displaying the same shape and amplitude. Small differences are expected for several
reasons. First, I have used a linear approximation to a nonlinear relation. Second,
least-squares fitting of traveltimes is not identical to stacking of waveforms. Third,
there are errors inevitably made in picking peaks from the velocity analysis. The first
two reasons probably account for the difference seen here in the peak amplitudes
between the predicted and measured values. For application to field data, the pick-

ing errors can in practice probably often override other considerations.

I have stated before that, for flat beds, the difference between the operator I use
and that used by Toldi (1985) is minor. The curve predicted using Toldi’s operator
is indistinguishable from that in Figure 4.3 (on the scale of this plot), confirming that

the choice of weighting function has only a minor effect on the operator.

Dipping bed example

Figure 4.4 shows a slowness model containing a bed with 20° dip, and above it,
a circular anomaly in the background slowness. Like the flat bed model in Figure
4.1, the slowness in the upper layer is 0.5 s/km, and that in the lower layer is 0.33
km/s. The slowness anomaly is identical to the one in figure 4.1, as are cable and
model dimensions. The zero-offset synthetic data from finite-difference modeling is
shown in Figure 4.5. Figure 4.6 shows the stacking slownesses measured from the
data; the expected pattern of a positive central peak flanked by regions of negative
response is again observed. Figure 4.7 shows the response predicted for migration

slownesses using the G, operator from chapter 3. Figure 4.8 shows the migration
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FIG. 4.1. Slowness model with a flat reflector and a Gaussian anomaly. Slowness in
the upper layer is 0.5 s/km, and in the lower layer is 0.33 s/km. The peak of the
circular anomaly has a slowness of 0.476 s/km. The lower figures show horizontal
and vertical cross sections through the anomaly along the dashed lines in the upper
figure. This model is used to generate the data in Figure 4.2.
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FIG. 4.2. Synthetic zero offset section generated by finite-difference modeling using
the slowness model in Figure 4.1. The effect of the slowness anomaly is visible as a
pullup on the flat reflector. Weak reflections below the reflector are artifacts from
reflections off the edges of the model.
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FIG. 4.3. Migration (stacking) slownesses for the flat bed in Figure 4.1. The solid
curve is predicted using the G, operator described in this paper. The stars are
values measured from processing finite-difference synthetic data.
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slownesses measured from the data by an automatic peak-picking program. Figure
4.8 is extremely noisy and is dominated by a strong left-to right trend from high
slowness to low; although an anomalous response can be seen in the middle of the

figure, on the whole it shows little resemblance to the prediction in Figure 4.7. What

has gone wrong?
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FIG. 4.4. Slowness model with a dipping reflector and a Gaussian anomaly. Slow-
ness in the upper layer is 0.5 s/km, and in the lower layer is 0.33 s/km. The peak of
the circular anomaly has a slowness of 0.476 s/km; it decays the same as the ano-
maly in Figure 4.1. This model is used to generate the data in Figure 4.5.

Figures 4.7 and 4.8 actually should not be compared to each other directly. The
predicted curve in Figure 4.7 shows the migration slowness as a function of lateral
location on the dipping reflector. Figure 4.8 shows the measured migration slowness
as a function of migrated midpoint. However, the mapping between a physical
reflection point on the bed and its location after migration depends on the migration
slowness, so at each migrated midpoint one is seeing not a single fixed reflection
point, but the images of many different points, depending on the migration slowness

used. This can be seen in Figure 4.9, which shows a contour plot of the peak energy
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FIG. 4.5. Synthetic zero offset section generated by finite-difference modeling using
the slowness model in Figure 4.4.
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FIG. 4.6. Stacking slownesses measured for the dipping bed in Figure 4.4. These
values are derived from processing finite difference data.
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FIG. 4.7. Migration slownesses predicted for the dipping bed in Figure 4.4, using the
G, operator of chapter 3.
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FIG. 4.8. Migration slownesses measured for the dipping bed in Figure 4.4. These
values are derived from processing finite difference data.

as a function of both migrated midpoint and slowness; this type of display is called a
horizon velocity (or slowness) analysis. Contours of peak energy can be seen to skew
severely as slowness increases. In other words, as migration slowness decreases, a

given event moves updip, so a velocity analysis at a constant migrated midpoint is
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not the same as one at a constant reflection point. (The amount that events move
as migration slowness changes is calculated in Appendix F.) A velocity analysis that
attempts to maximize the total energy will try to pick a single dominant high ampli-
tude event at many migrated midpoints; this is the source of the strong trend in Fig-
ure 4.8. Careful amplitude balancing might lessen this problem. In this sense, the
single-bed finite-difference synthetic used here is more difficult to analyze than field
data might prove to be, because there are no other reflectors present here to provide
constraining velocity information, and because amplitude balancing methods such as
AGC (see section 2.5) unacceptably magnify modeling artifacts arising from boun-

dary reflections and numerical wavelet dispersion.
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FIG. 4.9. Horizon slowness analysis for the dipping bed in Figure 4.4. This figure
shows contours of peak energy as a function of migrated midpoint and migration
slowness.
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The effect of the movement of events as migration slowness changes is to skew
the predicted curve in Figure 4.7. Applying a mapping compensating for this skew-
ing to Figure 4.7 converts the axis from reflector point location to migrated mid-
point, yielding the curve shown in Figure 4.10. This curve is closer to the shape of
the anomaly seen in the middle of Figure 4.8, but noise and the strong left-to-right

trend still dominate that figure.
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FIG. 4.10. Predicted migration slowness as a function of migrated midpoint. Note
that this figure differs from Figure 4.7, which shows migration slowness as a function
of physical location on the dipping bed.

To attack the skewing problem effectively, one needs to compare energy values
for the different data points that correspond to a fixed subsurface reflector point.
Directly tracking events on a bed is difficult, because one has to allow precisely for
the traveltime pullup as slowness changes, and also for the lag between onset and
peak of the wavelet. Another way to compensate for the difference between subsur-
face reflector position and migrated midpoint is to correct the horizon velocity
analysis for the skewing effect, as shown in Figure 4.11. In this figure, I have also
low-pass filtered and amplitude balanced the data over midpoint. The predicted
migration slowness anomaly pattern from Figure 4.7 is superposed on the energy con-
tours in Figure 4.11 as a heavy dashed line. The contours of greatest energy now do
show the expected anomaly pattern, but they still only approximately match the

predicted curve.
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FIG. 4.11. Horizon slowness analysis for the dipping bed in Figure 4.4. This figure
shows contours of peak energy as a function of migrated midpoint and migration
slowness. The figure is low pass filtered and balanced over midpoint, and is kinemat-
ically compensated for the skewing introduced by the movement of events caused by
migration at different slownesses. The dashed line shows the predicted migration
slownesses from Figure 4.7.

The compensation for skewing used in Figure 4.11 is, in effect, a kinematic resi-
dual migration that attempts to convert the positions of events to where they would
be if they were all migrated at the background slowness of 0.5 s/km. This compen-
sation could also be done by applying a wave-theoretical residual migration (Roth-
man et al., 1985) to each migrated section. Equivalently, one can migrate each panel
using not the various DMO-corrected stacking slowness, but instead using the same
background slowness for all panels. A horizon velocity analysis generated from data
processed this way is shown in Figure 4.12. No skewing or smoothing is applied this
time. The expected anomaly pattern is clearly outlined by the energy contours. Fig-
ure 4.13 shows the picked energy peaks compared with the predicted anomaly curve
from Figure 4.7. The measured curve is still somewhat noisy, but the agreement

with the prediction is much improved.
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FIG. 4.12. Horizon slowness analysis for the dipping bed in Figure 4.4. This figure
shows contours of peak energy as a function of migrated midpoint and migration
slowness. This figure is generated using data that are all migrated with the same
background slowness, rather than with a different slowness for each stacked section.
The dashed line shows the predicted migration slownesses from Figure 4.7.

Thus, for this example, migrating DMO-corrected sections with a single back-
ground slowness produces a substantially better velocity analysis than migrating
each section with its respective DMO-corrected stacking slowness. The velocity
information used in maximizing an energy measure is calculated from the comparing
the different data at different offsets; the movement in midpoint during zero-offset
migration does not change the total energy in a section, and, for the synthetic exam-
ple analyzed here, actually makes it more difficult to measure the energy peaks reli-
ably, rather than helping. Moreover, if the background slowness is not everywhere
constant, migrating all the sections with a variable velocity field adds considerably to
the computational cost. It is thus attractive to consider leaving out the zero-offset
migration entirely, and to examine instead slowness analysis based on the unmi-
grated, but DMO-corrected, sections. As discussed in section 3.10, the slownesses
measured from DMO-corrected but unmigrated data are essentially the same as those

from a migration analysis, but with the values assigned to unmigrated, rather than
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FIG. 4.13. Migration slownesses for the dipping bed in Figure 4.4. The solid curve
shows the predicted migration slownesses from Figure 4.7. The stars are peak values

picked from Figure 4.12.

migrated, positions. The curve in Figure 4.14 shows the DMO slownesses measured
from the data of figure 4.4. The predicted curve is also shown, and the agreement is
reasonably good. The pattern is similar to that of the migration slownesses in Figure
4.7, but shifted and stretched as expected. The measured data are less noisy than
the migrated measurements in Figure 4.13, and the agreement with prediction is

improved.

4.3 INVERTING THE LINEAR OPERATOR

Singular value decomposition

So far I have discussed the use of G as a forward modeling operator, for
predicting changes in migration slowness caused by specified interval slowness
anomalies. How invertible is this operator? The answer to this question will depend
on the reflector geometry and the data acquisition geometry. In this section, I con-
sider a variety of reflector and cable geometries and try to invert for the Gaussian
anomalies used for modeling in the previous section. In each case, I use the G,
operator to predict migration slownesses along specified reflectors, and then apply a
generalized inverse of G, to reconstruct the anomaly. I have parametrized the inter-

val slowness model on a grid of approximately 150 by 200 points, and use only about
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FIG. 4.14. Unmigrated DMO slownesses for the dipping bed in Figure 4.4. The stars
are values measured from processing finite-difference synthetic data. The solid curve
represents values predicted using the G, operator from chapter 3.

200 reflecting points, so the inversion of the G, is severely underdetermined. To

find a suitable generalized inverse for G, I use singular value decomposition (SVD).

The matrix G, is generally too large to use SVD, and requires an iterative solu-
tion such as conjugate gradients. By using only a few selected reflectors I have been
able to apply SVD in the examples here. SVD breaks G into two orthogonal

matrices matrix U and V and a diagonal matrix X, such that
G=UxvTl, (4.1)

This decomposed form provides extensive information about what parts of the prob-
lem are resolvable, and what parts are not. The columns of U (the left singular vec-
tors) provide an orthonormal basis for the data space and the columns of V (the
right singular vectors) an orthonormal basis for the model space. The diagonal
entries in ¥ (the singular values) are positive or zero. The right singular vectors
corresponding to singular values that are zero represent components of the model
that are not resolvable; the vectors with large singular values are the ones that will
dominate the inversion. SVD also provides an explicit solution for the least squares

pseudoinverse of G,
G? =vszluT (4.2)

where $7! is a diagonal matrix whose nonzero elements are the reciprocals of the
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nonzero elements of ¥. SVD thus provides for rectangular, singular matrices a
decomposition functionally analogous to an eigenvalue and eigenvector representation
of a nonsingular operator. For further description of the properties of SVD and the

pseudoinverse, see Menke (1984) or Golub and Van Loan (1983).

A single flat bed
The first inversion I consider is of the model of figure 4.1. The result of apply-

ing the pseudoinverse G,? to the predicted migration slowness data of figure 4.3 is
shown in Figure 4.15. The picture is dominated by two types of artifacts caused by
aliasing of the operator. These can be understood by considering Figure 4.16, which
shows the G, operator for one reflecting point. The coarse sampling of the model
space turns the steeply dipping edges of the operator into a set of discrete steps four
vertical pixels long. This aliasing pattern is one artifact visible in Figure 4.15. It
becomes less for a wider aperture operator, and can be eliminated in practice by
smoothing the inverted image. Such smoothing is valid because it is the long
wavelength components of the model space that are the goal of the inversion. The
second result of operator aliasing occurs because the operator becomes extremely nar-
row near the reflector, and cannot be represented accurately on the grid of anomaly
points. Unfortunately, this is also where the operator has peak amplitude. The
inversion is trying to solve for more model points than there are data points, and so
it has to choose between many possible solutions. One possible interval slowness
model to explain the anomalous pattern of migration slownesses consists of localized,
high amplitude anomalies situated immediately above the reflector. Because the
operator is represented so inaccurately close to the reflector, this incorrect solution
dominates the correct model of a more distant anomaly. A simple way to ameliorate
this problem is to taper or truncate the operator close to the reflector. This
approach works adequately in practice but is not wholly satisfactory, because there is
no a priori way of knowing that an anomaly is not, in fact, located close to a partic-
ular reflector. If many reflectors are present, this problem lessens, as I show in sec-

tion 4.4.

Reducing operator aliasing artifacts

Figure 4.17 shows another inversion of the model of Figure 4.1. This time a 2
km cable is used, the operator is truncated near the reflector, and the inverted result
is low-pass filtered, with a cutoff wavelength of 200 m both vertically and horizon-

tally. Most of the artifacts of Figure 4.15 are gone. The anomaly is correctly located
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FIG. 4.15. Result of forward modeling and inverting the G, operator using the flat
bed model of Figure 4.1. The cable length is 1 km. The top picture shows the
inverted anomalous interval slowness field. The lower figures show vertical and hor-
1zontal cross sections through the center of the Gaussian anomaly. Input values of
the anomaly are shown as dashed lines for comparison.
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FIG. 4.16. Example of the G, operator used in the inversion of Figure 4.15. Note
the aliased “stair steps” along the edge of the operator, and the inaccuracy of the
representation of the operator near the reflecting point.

horizontally, but is smeared vertically, perpendicular to the reflecting bed. This
smearing arises because most of the rays are traveling nearly vertically, and is a com-
mon feature of tomographic inversions. Because the energy is smeared over a
broader area than that of the original anomaly, the peak amplitude in the inversion

is also lower.

The most interesting feature of Figure 4.17 is the presence of positive sidelobes
on either side of the central negative peak in the inversion. This resonance is clearly
visible in the horizontal cross section. The origin of this resonance can be under-
stood by examining the singular value spectrum shown in Figure 4.18. The spectrum
contains 200 non-zero values, corresponding to the number of reflecting points used.
The spectrum decays rapidly, so the inversion is dominated by the first few model-
space singular vectors. The first two of these vectors are shown at the top of Figure
4.19. These singular vectors form a pair of phase-shifted sinusoids laterally. Clearly,
the inversion is most sensitive to this particular lateral wavelength. Smaller singular

values correspond to shorter lateral and vertical wavelengths, as shown in the lower
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FIG. 4.17. Result of forward modeling and inverting the G, operator using the flat
bed model of Figure 4.1. The cable length is 2 km. The operator is truncated close
to the reflector, and the inverted image is low pass filtered. The top picture shows
the inverted anomalous interval slowness field. The lower figures show vertical and
horizontal cross sections through the center of the Gaussian anomaly. Input values
of the anomaly are shown as dashed lines for comparison.
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pictures in Figure 4.19 and in Figure 4.20. As the wavenumber content increases, the
singular vectors resemble bandlimited combinations of the backprojection “V” pat-

terns determined by the aperture of the operator.
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FIG. 4.18. Singular value spectrum of the G, operator used in the inversion shown
in Figure 4.17.

This singular value structure, and the corresponding frequency domain transfer
functions, have been studied in detail by Loinger (1983) and by Toldi (1985). I do
not pursue this Fourier domain analysis here, because it is applicable only if both the
background slowness field and the reflector structure are laterally invariant, and so

does not generalize for reflectors that are dipping.

A single dipping bed

Figure 4.21 shows an inversion for the 20° dipping bed model of Figure 4.4.
Again, a 2 km cable is used, the operator is truncated near the reflector, and the
inverted result is low-pass filtered, with a cutoff wavelength of 200 m both vertically
and horizontally. The result is very similar to that shown in Figure 4.17 for the flat
bed model, but skewed by the dip. The center of the anomaly is correctly located.
The anomaly is smeared perpendicular to the reflecting bed, but is well resolved
parallel to it, except for sidelobes similar to those seen in Figure 4.17. The singular

value spectrum of the dipping G, operator is shown in Figure 4.22. It differs little
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FIG. 4.19. Selected model space singular vectors for the G, operator used in the
inversion shown in Figure 4.17. The singular vector numbers correspond to the
singular values in Figure 4.18. The axes of the plots are the same as for the model in
Figure 4.1 and the inversion in Figure 4.17.
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FIG. 4.20. Selected model space singular vectors for the G, operator used in the
inversion shown in Figure 4.17. The singular vector numbers correspond to the
singular values in Figure 4.18. The axes of the plots are the same as for the model in
Figure 4.1 and the inversion in Figure 4.17.
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from that of the flat bed operator in Figure 4.18. Selected model-space singular vec-
tors are shown in Figure 4.23 and 4.24. Again, they are similar to those for the flat
bed operator, but now the effective angular aperture of the operator increases as one
moves updip, and the dominant wavelengths in the singular vectors correspondingly

increase, as can be seen particularly well in vectors 29 and 30 in Figure 4.24.

A comparison with ray-trace tomography

How good are these inversions? Clearly, the anomalies are not reconstructed
perfectly. Is this a failure of the particular inversion method used here, or is it
intrinsic to using a single reflector and a shooting geometry with limited aperture
and view angle? The best comparison is with conventional ray-trace tomography. In
ray-trace tomography, traveltimes are computed for all shot-geophone pairs, and the
entire set of traveltime is inverted. In the migration slowness inversion of Figures
4.17 and 4.21, the traveltime perturbations for a given midpoint are all combined
into one effective parameter, the migration slowness, describing the curvature of the
best fitting moveout curve. Ray-trace tomography thus uses more detailed informa-
tion. As discussed in section 3.3, migration slowness analysis can be posed as a
filtered form of tomography. This filter cannot add information, so ray-trace tomog-

raphy defines the resolution limit for analyzing these synthetic examples.

Figure 4.25 shows the result of forward modeling rays using the dipping bed
model of Figure 4.4, and inverting the traveltime data using an iterative tomographic
algorithm (Stork, 1988). The cable length used is 2 km, the same as in Figure 4.21.
The anomaly is again well resolved parallel to the reflector, and broadly smeared per-
pendicular to it. The extent of the anomaly is better defined, but otherwise the
reconstruction is substantially the same as that achieved using migration slownesses.
The principal improvement of this image over the migration slowness inversion of

Figure 4.21 is the near absence of resonant sidelobes.

Inverting DMO slownesses

I have claimed in section 3.10 that DMO slownesses contain the same informa-
tion as migration slowness. Analysis of the dipping bed finite-difference synthetic
example in section 4.2 suggested that DMO slowness anomalies might be more robust
to measure than the corresponding migration slowness anomalies. The underlying
G, operator is the same for both DMO slownesses and migration slownesses, so the
inversion should be the same. Figure 4.26 shows the result of inverting the DMO
slownesses predicted for the 20° dipping bed of Figure 4.4. As expected, the
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FIG. 4.21. Result of forward modeling and inverting the G, operator using the 20°
dipping bed model of Figure 4.4. The cable length is 2 km. The top picture shows
the inverted anomalous interval slowness field. The lower figures show vertical and
horizontal cross sections through the center of the Gaussian anomaly. Input values
of the anomaly are shown as dashed lines for comparison.
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FIG. 4.22. Singular value spectrum of the G, operator used in the inversion shown
in Figure 4.21.

inverted result is indistinguishable from that obtained in Figure 4.21 using migration

slownesses.

Inverting slowness anomalies measured from synthetic model data

The slowness anomalies measured from the finite-difference data for the dipping
bed model (Figures 4.13 and 4.14) generally agree with the predicted values, but
differ in the peak amplitude of the anomaly and in the amount of asymmetry seen in
the anomaly pattern, as well as being contaminated with picking errors. How well

can these measured values be inverted?

Figure 4.27 shows the result of inverting the measured migration slownesses
from Figure 4.13. This inversion cannot be compared directly with that shown in
Figure 4.21, because the cable length for the finite-difference data (1 km) is only half
that used in Figure 4.21. A better comparison is provided in Figure 4.28, which
shows the result of forward prediction and inversion with a G, operator using the
shorter cable length. The shorter cable results in a narrower angular aperture, and
poorer resolution of the anomaly. The inversion of the measured data (Figure 4.27)
has noticeably larger artifacts than the inversion of the predicted data (Figure 4.28),
but still yields a reasonable resolution of the anomaly. Figure 4.29 shows the result
of inverting the measured DMO slownesses from Figure 4.14. These data are less

noisy than the migration data of Figure 4.13, and the resulting inversion is
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FIG. 4.23. Selected model space singular vectors for the G, operator used in the
inversion shown in Figure 4.21. The singular vector numbers correspond to the
singular values in Figure 4.22. The axes of the plots are the same as for the model in
Figure 4.4 and the inversion in Figure 4.21.
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FIG. 4.24. Selected model space singular vectors for the G, operator used in the
inversion shown in Figure 4.21. The singular vector numbers correspond to the
singular values in Figure 4.22. The axes of the plots are the same as for the model in
Figure 4.4 and the inversion in Figure 4.22.
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FIG. 4.25. Result of ray-trace tomographic inversion using the dipping bed model of
Figure 4.4. The cable length is 2 km. The top picture shows the inverted anomalous
interval slowness field. The lower figures show vertical and horizontal cross sections
through the center of the Gaussian anomaly. Input values of the anomaly are shown
as dashed lines for comparison. The tomographic inversion data for this figure were
generously provided by Christof Stork.
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FIG. 4.26. Result of forward modeling and inverting DMO slownesses for the 20°
dipping bed model of Figure 4.4. The cable length is 2 km. The top picture shows
the inverted anomalous interval slowness field. The lower figures show vertical and
horizontal cross sections through the center of the Gaussian anomaly. Input values
of the anomaly are shown as dashed lines for comparison. This figure is nearly ident-
ical to Figure 4.21, which used migration slownesses for the same model.
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correspondingly better, with the anomaly resolved nearly as well as in Figure 4.28.

4.4 IMPROVING (AND DEGRADING) RESOLUTION

Three parallel dipping reflectors

How can the results of the preceding section be improved? The are two basic
paths open: more reflectors, or a more sophisticated inversion. I look first at the
effects of improving the resolution by using more than a single planar bed to
illuminate the anomaly. This will ordinarily be the most important contribution to
improved velocity analysis; good velocity resolution in practice depends on favorable

geologic structure as much or more than on geophysicists’ ingenuity.

Figure 4.30 shows an inversion using three parallel dipping reflectors in place of
the single one used in Figure 4.17; beds have been added 400 m above and below the
single reflector previously used. The cable length is again 2 km, and the anomaly is
the same one as in Figure 4.4. The lower edge of the anomaly is better defined, but
the image remains smeared perpendicular to the beds, and the sidelobes are similar
to the single bed inversion. Note that this time I did not truncate the operator near
the beds. The redundant information from the multiple beds forces the inversion to
reject a model with strong anomalies along the beds in favor of a concentrated ano-
maly located above all the beds. Thus, the effect seen in Figure 4.15 should not be a

problem in practice.

Three reflectors with different dips

The smearing and the sidelobe resonance are both caused in large part by using
only a single dip angle on the reflectors, limiting the directions in which the anomaly
is illuminated. Both of these problems are dramatically reduced if reflectors are
located so that rays traverse the anomaly in a wide range of directions. Figure 4.31
shows an inversion of the same anomaly as in Figures 4.17, but using three beds of
different dip. The inversion is much better than any of the previous results. The
peak is circular and correctly located, although it is still a little low in amplitude and
some small sidelobes can still be seen in the horizontal cross section. Thus, favorable
geological structure with reflectors situated so that anomalies are illuminated from
many angles is the most important single factor contributing to good velocity resolu-

tion.
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FIG. 4.27. Result of inverting the migration slownesses from Figure 4.13, measured
from finite-difference synthetic data for the 20° dipping bed model of Figure 4.4.
The cable length is 1 km. The top picture shows the inverted anomalous interval
slowness field. The lower figures show vertical and horizontal cross sections through
the center of the Gaussian anomaly. Input values of the anomaly are shown as
dashed lines for comparison.
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FIG. 4.28. Result of forward modeling and inverting the G, operator using a 1 km
cable. The anomaly model is that of Figure 4.4. The top picture shows the inverted
anomalous interval slowness field. The lower figures show vertical and horizontal
cross sections through the center of the Gaussian anomaly. Input values of the ano-
maly are shown as dashed lines for comparison.
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FIG. 4.29. Result of inverting the DMO slownesses from Figure 4.14, measured from
finite-difference synthetic data for the 20° dipping bed model of Figure 4.4. The
cable length is 1 km. The top picture shows the inverted anomalous interval slowness
field. The lower figures show vertical and horizontal cross sections through the
center of the Gaussian anomaly. Input values of the anomaly are shown as dashed
lines for comparison.
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FIG. 4.31. Result of forward modeling and inverting the G, operator using three
beds with different dips. The anomaly is the same as in Figure 4.4. The cable
length is 2 km. The top picture shows the inverted anomalous interval slowness field.
The lower figures show vertical and horizontal cross sections through the center of
the Gaussian anomaly. Input values of the anomaly are shown as dashed lines for
comparison.
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Joint inversion using inner and outer offsets separately

The wavelength of the sidelobe resonance is controlled by the cable length,
which determines the aperture of the G, operator. This suggests that it might be
possible to damp the resonance by performing a joint inversion using cables of
different lengths. Alternatively, one can divide the cable into sections, and jointly
invert the data from each section. Figures 4.32 through 4.34 show the result of split-
ting the cable into inner and outer halves, inverting each, and jointly inverting. The
model used is the dipping bed of Figure 4. The cable is 2 km long; one operator uses
the inner 1 km, and the other the outer 1 km. Figure 4.32 shows the migration slow-
ness anomalies predicted by each operator. Also shown for comparison is the
response using the 2 km cable of Figure 4.15. The inversion using the 1 km cable
has already been shown in Figure 4.28. Figure 4.33 also uses a 1 km aperture, but
the inner offset is 1 km, so 1t is equivalent to using the outer half of the 2 km cable

used in Figure 4.21. Figure 4.34 shows the joint inversion of the two operators.

]
~
-

slowness (s/km)
—-0.05 0 0.95 0.1

midpoint (km)

FIG. 4.32. Migration slownesses for the dipping bed model of Figure 4. The dashed
curve is the prediction using the inner 1 km of the cable. The solid curve is the
prediction using the outer 1 km of the cable. The dotted curve is the prediction
using the full 2 km cable.
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FIG. 4.33. Result of forward modeling and inverting the G, operator using a 1 km
cable with 1 km inner offset. The anomaly model is that of Figure 4.4. The top pic-
ture shows the inverted anomalous interval slowness field. The lower figures show
vertical and horizontal cross sections through the center of the Gaussian anomaly.
Input values of the anomaly are shown as dashed lines for comparison.
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used for Figure 4.28 and 4.33. The anomaly model is that of Figure 4.4. The top
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The resolution using either the inner or the outer 1 km cable (Figure 4.28 or
4.33, respectively) is considerably poorer than that shown in Figure 4.21, which uses
the full 2 km cable. The resolution from the joint inversion (Figure 4.34), however,
rivals the tomographic reconstruction in Figure 4.25. For a broad anomaly such as
the one used here, the information contained in the complete set of traveltimes for
the full offset range is heavily redundant. Nearly as good a reconstruction is
achieved here using only two parameters per midpoint (the migration slowness per-
turbations for inner and outer cables), instead of using all the traveltimes for every

offset.

Joint inversion of migration slowness and traveltime anomalies

So far I have considered only the G, operator relating perturbations in interval
slowness and migration slowness. As discussed in chapter 3, the full G operator has
a second independent part to it, telling how much pullup is observed perpendicular
to a bed. For simplicity I consider flat beds, where G, is zero, and only G, needs to
be examined. Figure 4.35 shows the traveltime pullup predicted using G, for a 1 km
cable and the model of Figure 1. The predicted maximum pullup is 24.7 msec; the
pullup measured from the finite-difference data of Figure 4.2 is 24 msec, so the agree-

ment is excellent.

time (s)

—0.02

T 1 1 1 1

0 1 2 3 4
midpoint (km)

FIG. 4.35. Change in migrated traveltime 7 for the data of Figure 4.2, predicted
using the G, operator. The peak pullup value is 24.7 msec.
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The G, operator can be inverted using SVD just as the G, operator is. The
result of performing such an inversion is shown in Figure 4.36. The lateral resolution
is good, but the vertical resolution is far worse than that for the comparable G,
inversion in Figure 4.17. The singular spectrum for this G, operator (Figure 4.37)
decays even more rapidly than that for G, (Figure 4.22); it is dominated by the first
few large singular values. However, the dominant singular vectors are different for
G, and for G, The first four such model-space singular vectors for G, are shown in
Figure 4.38. The G, operator is insensitive to lateral wavelengths longer than the
resonant wavelength. The G, operator, on the other hand, is most sensitive to the
longest wavelength components of the model. Unfortunately, because it is nearly a
pure pullup, it is very insensitive to vertical changes, and so has poor vertical resolv-
ing ability.

Because the two operators are sensitive to different wavelength components of
the model space, one could hope to improve resolution by joint inversion of the two
operators. Such an inversion is shown in Figure 4.39. The horizontal resolution is
better than for the G, operator in Figure 4.17, and the vertical resolution is similar.

The principal difference is that the positive sidelobes are lessened.

The use of mixed units creates a problem for the joint inversion. The G,
operator relates slownesses to slownesses, so it is itself dimensionless. The G, opera-
tor relates slownesses to times, so it carries length. Thus, changing the units for
measuring length can radically change the relative magnitudes of the two operators.
To combine them, a weighting scheme is required to make them scale the same. In
this example, the obvious length parameter for conversion is the depth of the
reflector. For the inversion shown in Figure 4.39, the G, operator is divided by the
reflector depth, making it dimensionless like the G, operator, before performing

SVD on the combined matrix.

A more general approach to scaling operators with mixed units is to make all
the parameters and operators dimensionless by using only relative changes. That is,
instead of considering magnitudes of changes in interval slowness, Am , migration
slowness, As, migrated time, A7, and midpoint, Ay, recast all the equations in
terms of the normalized changes Am /m, As /s, A7/7, and Ay /y. Now all the
variables are dimensionless, and scaling problems do not arise. For flat beds and a
constant slowness background, one has z; — s 7, and it is easy to show that the
weighting of G, by z; used above is equivalent to using normalized, dimensionless
variables. In the more general case, the division by y might appear troublesome,

because the location of the origin of the y axis coordinates is arbitrary. However, in
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FIG. 4.36. Result of forward modeling and inverting the G, operator. The anomaly
model is that of Figure 4.4. The top picture shows the inverted anomalous interval
slowness field. The lower figures show vertical and horizontal cross sections through
the center of the Gaussian anomaly. Input values of the anomaly are shown as
dashed lines for comparison.
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FIG. 4.37. Singular value spectrum for the G, operator used in the inversion shown
in Figure 4.36.

section 3.7 I showed that y and 7 are not really independent variables, and so in

principle one could suppress y altogether.

The inversion of G, and the joint inversion of G, and G, are more sensitive to
singular value clipping or damping than are the rest of the inversions shown here.
For most of the examples in this chapter, all non-zero singular values are inverted.

Here the smallest singular values of G, are too small and must be clipped or damped

to produce a reasonable result.

Fragmented reflectors

I have used continuous reflectors for all the inversion examples so far. In field
data, reflector continuity can vary widely; often only portions of reflectors can be
identified. Is the inversion degraded greatly if pieces of the reflectors are missing?
To test this, I divided the dipping bed of Figure 4.4 first into segments with small
gaps, and then into a few isolated pieces. Figure 4.40 shows the inversion of the first
of these examples, using many short reflector segments. The inversion is noisier than
that of Figure 4.21, which used a continuous reflector for the same inversion.
Numerous artifacts are seen arising from the truncated edges of the bed segments,
but the anomaly reconstruction is not degraded unreasonably. Figure 4.41 shows the
second example, using four long pieces with wide gaps. Now the reconstruction is

much worse. Too much of the bed is missing to illuminate the anomaly adequately,
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FIG. 4.38. The first four model-space singular vectors for the G, operator used in
the inversion shown in Figure 4.36. The singular vector numbers correspond to the
singular values in Figure 4.37. The axes of the plots are the same as for the model in
Figure 4.4 and the inversion in Figure 4.36.
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FIG. 4.39. Result of forward modeling and jointly inverting the G, and G, opera-
tors. The anomaly model is that of Figure 4.4. The top picture shows the inverted
anomalous interval slowness field. The lower figures show vertical and horizontal
cross sections through the center of the Gaussian anomaly. Input values of the ano-
maly are shown as dashed lines for comparison.
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and the edge artifacts dominate. In principle, these edge artifacts could be lessened
by treating the edges as point diffractors made up of all dips, and using at those

points a G, operator that contains a wide range of dips. I have not attempted this

experiment yet.

4.5 FORMULATING NONLINEAR INVERSION

So far I have discussed the inversion of the linear operator relating perturba-
tions in interval and migration slownesses. This linear inversion is likely to be inade-
quate for finding interval slownesses for realistic seismic data, because the problem of
inverting migration slownesses for interval slownesses is in general significantly non-
linear. However, the linear operator presented here can be used to provide a gradient
direction to guide an iterative, nonlinear inversion. The basic idea of any such inver-
sion scheme is to begin with an initial model of interval slownesses and then update
it until the corresponding migration slownesses better match those measured from

the data.

Perhaps the simplest approach would be to pick migration slownesses using the
methods of chapter 2, in the same fashion that conventional stacking velocities are
picked. The interval slowness model could then be updated iteratively to minimize
the least-squares error between the predicted slownesses and the picked values. [
believe, however, that this would be a poor approach. Stacking or migration
slownesses average the effects of interval slownesses and so are insensitive to small
changes in interval slownesses. The corollary to this, however, is that the inversion
of migration slownesses for interval slownesses can be unstable; small picking errors
can get amplified into large errors in interval slowness. This instability is a familiar
problem with conventional inversion of stacking velocities using the Dix rms approxi-

mation.

As discussed briefly in chapter 2, conventional velocity analysis involves picking
peak values that maximize some measure of the quality of the corresponding imaged
section. The total semblance or energy in the imaged section thus can be used as an
objective function measuring the optimality of the velocity function. The goal of an
optimization algorithm is then to maximize this objective function; this still
corresponds to finding the peaks that one would conventionally pick, but the penalty
for deviating from the peaks is determined by the contours of the energy or sem-
blance function, not by the quadratic penalty function implicit in least-squares fitting

of picked peaks.
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FIG. 4.40. Result of forward modeling and inverting the G, operator for a per-
forated, dipping bed. The anomaly model is that of Figure 4.4. The top picture
shows the inverted anomalous interval slowness field. The lower figures show verti-
cal and horizontal cross sections through the center of the Gaussian anomaly. Input
values of the anomaly are shown as dashed lines for comparison.
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FIG. 4.41. Result of forward modeling and inverting the G, operator for a severely
fragmented, dipping bed. The anomaly model is that of Figure 4.4. The top picture
shows the inverted anomalous interval slowness field. The lower figures show verti-
cal and horizontal cross sections through the center of the Gaussian anomaly. Input
values of the anomaly are shown as dashed lines for comparison.
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Casting velocity analysis as an optimization algorithm in this way is not new to
this dissertation. The method has been developed extensively by Toldi (1985), and
the approach presented here is explicitly based on that work. The principle
difference here is that the incorporation of dip using migration velocities in place of
stacking velocities introduces several complications not present in Toldi’s work. I
focus here on those differences, and refer the reader to Toldi (1985) for further dis-

cussion of the implementation of such algorithms.

The basic data used for the inversion is a cube of migration slownesses, gen-
erated as described in chapter 2, by imaging with a suite of constant slowness func-
tions. The data is a function of the three parameters midpoint y, migrated time 7,
and migration slowness s. For an objective function, I use the total energy E,
(smoothed over an appropriate window), so the data cube can be converted to an
energy cube E (s,y,7). Specifying a slowness function s defines a particular relation
s(y,7). The objective function @ (s) is then defined as the total energy in the sec-

tion,

Q(s) = %] E(sq(ya,7a),9a.,7a) - (4.3)

The optimization algorithm uses a gradient to update iteratively a starting
model. The gradient 4@ of the objective function @ with respect to the migration
slownesses s can be evaluated easily from the energy cube. What is really needed for
a good algorithm, however, is the gradient y7,,,@ of the objective function @ with
respect to changes in an underlying model m of interval slowness as a function of the
physical location =z and depth z. To derive this one can use the linear operator G

derived in chapter 3 to specify a relation between s and m.

Start with an interval velocity model m(z,,z,). Suppose also that a set of
reflecting points d=(z;,2,4 ) is given, and that the migration slownesses s; =s (d) are
known. A map between the reflecting points d and the corresponding data points
(yq,74) is also needed. Thus all three variables s4, y;, and 7; are specified as func-
tions of the reflector point coordinates z; and z; and of the interval slowness model
m, and all will change as m is changed. The objective function @ can then be

redefined as a function of the interval slowness model m
Q(m) = 33 £ [, (m), 7y (m) g (m) | (+4)
d

An application of the chain rule yields

d

_ 9@ _
(VmQ)a ama E [asd ama 87',1 ama ayd 8ma
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In computing this gradient, the partial derivatives of E with respect to s;, 7,, and
y; can be computed by finite difference approximations applied to the energy data
cube. For example,

oF ~ E(sd +Asd 'Yd,Td ) - E(sd ' Yd 7Td)
834 Asd

(4.6)

and similarly for y; and 7;,. The remaining derivatives in equation 4.5 are just the
terms of the G operator from chapter 3: ds; /dm, =G, (d,a), etc. Thus equation

(4.5) can be written more compactly as
VmQ - GsTVSQ + GyTVyQ + GyTVTQ (47)

where the superscript T denotes the matrix transpose.

A simple iterative optimization algorithm that uses this gradient to define a

steepest ascent direction can be outlined as follows:

Set initial interval slowness model m
Set initial values of 84, 74, and y,
Calculate initial dip spectrum estimate 6; from time dips and sy

Compute G(d,a) from initial m and 6,

Repeat until AQ is small enough
{
1. Compute v,Q, V,Q, and vy @ by finite differences
2. Form y7,,& at the current model m:
vm@ = GJv.Q +GJv,Q + G[v,Q
3. Line search for o that maximizes @ (m+av Q)
4. Update model
Am = ay,@
m=m + Am
s; =84 + G,Am
Ty = T4 + G,Am
Yo =Ys + GyAm
4. Update 8; using new s,

5. Compute G(d,a) for new m and 8,
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Many details of this algorithm deserve further explanation. The initial information
needed to start the iterations consists of more than just a beginning model of inter-
val slownesses. One also needs a corresponding model of migration slownesses, and a
map relating subsurface points (z;,z;) to their images in the data (y;,74). The
starting estimate of migration slownesses is important, because errors in the initial
relation between interval and migration slownesses will propagate through further
iterations. The starting values of migration slowness will be equal to the interval
slowness for a constant slowness model, and the map between (z,,z;) and (y,;,74)
will be trivial. For more complicated starting models, these relations can probably
be calculated best by using ray-traced traveltimes. One also needs an initial estimate
of dip spectra at each point d. This can be estimated from the time dips d 7/dy

measurable in the migrated data using the relation

1 dr
tanl —= — — . 4.8
an 2s dy (48)

This conversion of time dips to physical dips depends on the current estimate of the
migration slowness s, and so it must be updated at each iteration. The line search
of step 3 is needed because this is a nonlinear problem; the gradient tells the direc-
tion in which to change the model, but not how far to proceed in that direction.
During the search one will need to compute several values of Am, Asy, Ayy, and
A1y New values of y; and 7; will generally not lie on grid points, and will have to

be interpolated. Similarly, values of 6; will need to be interpolated.

The need to interpolate values of y;, 74, and especially, 8,, implies that this
formulation of the algorithm will work best if a dense mesh of reflecting points d is
used. The size of the G matrices and the cost of computing them increases directly
with the number of reflecting points used. If the G operators become too large to
store on disk and instead need to be recomputed at each use, the computational
penalty could be excessive, because of the repeated use of G during the line search in
step 3. It would be attractive to be able to use only the parts of the data that
correspond to strong, well defined reflectors, thus cutting down on the number of
reflecting points considered. However, only the (y,;,74) coordinates of these reflectors
will be known at the start, not the (24,25 ) values of the physical reflector location,
so if one fixes the set of points (z;,z;) to be used, their image points (y,;,7; ) may
wander away from the strong reflectors. Moreover, interpolating dip values §; may
lead to inaccuracies, because dips can change abruptly. For these reasons, it might
prove better to compute gradients with respect to a fixed grid of (y,;,7;) coordinates,

not with respect to a fixed set of (z,,2; ) points as assumed in the algorithm outlined
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above. This type of approach is also possible, but introduces its own further set of
complications. I discuss in Appendix E an alternative algorithm based on using a
fixed (y,4,74) grid.

Both the algorithm given here and that outlined in Appendix E assume that the
mapping between (z4,2;) and (y4,7; ) is updated using the computed changes Ay,
and Ar;. This updating can also be done by explicit ray tracing through the new
slowness model, and such a ray tracing approach may prove more robust. Both of
the algorithms can also be modified readily to use DMO-corrected stacking
slownesses instead of migration slownesses. The only real change is in the use of

unmigrated positions in place of migrated ones.

Whichever approach is chosen, a practical implementation probably would not
use the simple steepest ascent method described above. Conjugate gradient methods
use the gradient information in more sophisticated ways to accelerate convergence
greatly. Such techniques are described in detail in Luenberger (1983), Press, et al.
(1986), and Gill et al. (1981). Toldi (1985) discusses the use of data space smoothing
to enhance convergence of early iterations if a poor starting model is used. He also
examines incorporation of constraints during the optimization. Only the long
wavelength components of the model can be expected to be resolved well, so con-
straints can be included that bias the optimization against short wavelength features.
One simple way to incorporate such smoothness constraints is to add penalty terms

to the objective function @, for example,

@ (m) = 33 B[4 (m) 7 (m).v4 (m) | - m™(§ DDy + ¢ DD )m  (49)

where D is a derivative matrix and 3 and € are adjustable damping parameters
determining the degree of lateral and vertical smoothing to be used. Other con-
straints based on well-log data, existing geological models, or other a priori informa-
tion could be included similarly. For further discussion of how to include such con-

straints in optimization problems, see Claerbout (1976) or Menke (1984).
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DISCUSSION AND CONCLUSIONS

In this chapter I have examined modeling of a canonical velocity anomaly, a cir-
cular, Gaussian tapered blob against a constant background, using the G operator of
chapter 3 for both flat and dipping beds. I also considered inversion of this linear
operator using singular value decomposition to look at the resolution possible. The
modeling results show a general agreement with anomalous slowness values measured
from finite-difference synthetic data. These results also suggest that the major limi-
tation to measuring migration slowness anomalies lies in trying to compensate for the
rapid movement of events between panels migrated with different slownesses. It is
easier to measure slowness anomalies if all migration is done at a single background

slowness, or if unmigrated, DMO-corrected slownesses are used instead.

Because measuring slowness by summing wavelets can give a different estimate
of optimal moveout curvature than that predicted by least-squares fitting of travel-
times, further modeling should be done to quantify these systematic deviations, and
to see if they can be compensated for. This modeling should probably be done using
ray tracing; finite-differencing is computationally slow and introduces artifacts that

can bias velocity analyses.

The resolution studies in this chapter show that inverting migration slownesses
i1s not as accurate as an ideal traveltime tomographic inversion, but the result can be
close. The principle limitation is that the singular value spectrum is dominated by a
few principal resonances. These resonances cause sidelobes to form during inversion.
These sidelobes can be lessened by joint inversion of sections of the acquisition aper-

ture, or by having enough reflectors present in the data.

Velocity analysis using either DMO or prestack time migration uses traveltimes
for common reflection point gathers. The transformation from common midpoint to
common reflection point eliminates the principal cause of multiple values in velocity
spectra. Both methods are based on estimating moveout in CRP gathers; the
difference lies in whether the velocity information is measured at migrated or at
unmigrated locations. Prestack migration moves events in both offset and midpoint.
This movement can be decoupled into a summation over a generalized moveout tra-
jectory, followed by a zero-offset migration. Both stages contain velocity information.
The preliminary results here suggest that the latter migration stage, although
extremely useful for interactive analysis, as shown in chapter 2, can cause problems
for automatic velocity analysis methods based on maximizing the energy or coherence
over offset along the moveout trajectory. Dmo-corrected velocities are effectively

equivalent to the result of backing out the zero-offset migration stage from prestack
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time-migration velocities, and appear to be easier to measure reliably. The linear
operator derived in chapter 3 can be used in either case, and the resolution studies in

this chapter apply to inversion of DMO velocities as well as migration velocities.

For migration velocity analysis here I use data that is prestack migrated at
various velocities, with stacking an implicit part of the migration. A closely related
approach would be to migrate all offsets using a single reference velocity model, and
attempt to estimate the residual traveltime differences remaining between different
offsets. In effect, this would be another way to estimate the differences between the
predicted and actual moveouts in CRP gathers. If the background velocity is con-
stant, or only gradually varying, I see no intrinsic advantage to this alternate
approach. The possible advantage arises if one uses depth migration instead of time
migration for the background. It might then be possible to obtain better resolution,
since one more directly compensates for variations in the background; computing
only a residual moveout this way links imaging and velocity analysis more closely.
This is the gist of the approach suggested by Al-Yahya (1987) and extended by
Etgen (1988).

In principal, it should be possible to obtain similar results with the techniques
of this thesis by combining them with a layer stripping approach. One could com-
pute the velocities for the shallow depths, downward continue the data using these
computed velocities, and then compute velocities for the deeper regions using the
downward continued data. In the second stage one would, in effect, be computing
only a residual moveout for the CRP’s, since the effects of the upper layers would be
removed. It remains to be seen what method, or combination of methods, will prove

most useful in practice.



